Spring Boot Reference Guide

2.1.0.BUILD-SNAPSHOT

Phillip Webb , Dave Syer , Josh Long , Stéphane Nicoll , Rob Winch , Andy Wilkinson , Marcel Overdijk ,
Christian Dupuis , Sébastien Deleuze , Michael Simons , Vedran Pavi# , Jay Bryant , Madhura Bhave

Copyright © 2012-2018

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Boot Reference Guide

Table of Contents

[. Spring BOOt DOCUMENTALIONieeiit et et e e et e e et e et e e et e e eaeeeanns 1
1. About the DOCUMENTALIONcceuiiiiei et e e e e e e e e et e e e e eanas 2
2 1= 111 o T 1= o TS 3
T | £ B (=7 o PP PTRUPRT 4
4. Working With SPring BOOUcoouuuiiiiiii e 5
5. Learning about Spring BOOt FEALUIESiiiiiieii e ee e e e e e e e e eaaeees 6
6. MOVING 10 PrOTUCLIONceuiiiiiiee e et e e e et e e e e eees 7
FA Yo A= TaTod=To [o] o[ST UPPPTTR 8

LR =Y 1] T S = 5 (T 9
8. INtroducing SPriNG BOOTt et 10
9. SYStEM REQUIFEIMENTS ... iiiiiieeeiii ettt et e ettt e e ettt e e e e et e e e eat e et eatreeeentnaeeeee 11

9.1, SerVIEt CONLAINEISuiiiiii et et e e et e e et e e e eaa e e eenanns 11

10. Installing SPring BOOLuiiiiii e 12
10.1. Installation Instructions for the Java Developercooveviinieiiiiieei e 12
Maven INSLAlALION oo e e 12

Gradle INSTAIALIONe e 13

10.2. Installing the SPring BOOt CLIcoouuiiiiiiiieii e 14
Manual INSTAlIAtIoNooiii e 14
Installation with SDKMANT! ... e 14

OSX Homebrew INStallationo.uiiiiiiiiiii e 15

MaCPOIS INSTAIALIONoovniiiiii e e 15
Command-line COoMPIELIONcouuiiii e e 15

WiIndows Scoop INSLallationiiiiiiiii e 16
Quick-start Spring CLI EXamMPIEvevniiiicii e e e 16

10.3. Upgrading from an Earlier Version of Spring BOOLcccooeuiiiiiiiiiiiniiiiieeies 17

11. Developing Your First Spring Boot AppliCationccoiuiiiiiiiiiiiii e 18
11.1. Creating the POM ... e e e e s 18
11.2. Adding Classpath DependencCi€soviiuuiiiiiiaiiiiaieiee e 19
11.3. WItING the COOEoeviiiiiii e 20

The @RestController and @RequestMapping ANNotationscccceevvveveneeennnnns 20

The @EnableAutoConfiguration ANNOLAtIONviiiiiiiiiiiiiieeee e 20

The “Main” Method ... e e 21

11.4. RUNNING the EXAMPIEoovni e e e e eaes 21
11.5. Creating an EXeCUtable JAr ... 21

D2 V1Y o T T (o T == o N P 23

1T =T g T S o] T T =0T | 24

13, BUIIA SYSTEIMS ... ettt et e et e e e et ean s 25
13.1. Dependency ManagemENTcccuuuuiiiiiii ettt ettt e e e eeaans 25
D32, IMTAVEN .ttt 25

Inheriting the Starter Parent ... 26
Using Spring Boot without the Parent POMc.oooiiiiiiiiiiinieceeee 26
Using the Spring Boot Maven PIUGINooviiiiii e 27
R G A 1 7= To | [PP PT PR RPPTRPN 27
G T o | TSP 27
R ST] 1= 11 (=T £ S PP PT TP PP 28

14, SErUCTUNING YOUTE COOR ..eniiiiiiii ettt e e et e et et e e b e e ea e e et 34

14.1. Using the “default” PACKagec.couuuiiiiiiiiiiii e 34

2.1.0.BUILD-SNAPSHOT Spring Boot ii

Spring Boot Reference Guide

14.2. Locating the Main Application CIassScccuuuiiiiiiiiiiiii e 34

15. ConfIQUIAtiON ClASSESu ittt e e 36
15.1. Importing Additional Configuration CIaSSEScccovviiiiieiiiiiiiii e 36
15.2. Importing XML CONfIQUIALIONcccouuiiiiiii it 36

16. AULO-CONTIGUIALION ...ooveiiitt e e et e e e et e e e et e e e enta e eeeees 37
16.1. Gradually Replacing Auto-configurationcccooeviiiiiiiiiiiiiicc e 37
16.2. Disabling Specific Auto-configuration ClaSSesccccuiieiiiiiiiiiiiiiieee e 37

17. Spring Beans and Dependency INJECLIONcoouuuiiiiiiiiieeii e e 38
18. Using the @SpringBootApplication ANNOLAtIONccceviiiiiiiiiiieei e 39
19. RUNNING YOUr APPIICALION ...covviieiiii et 41
19.1. RUNNING from N IDEcoouiiiiiiiiei e 41
19.2. Running as a Packaged Applicationcccoiiiiiii i, 41
19.3. Using the Maven PIUGINooooiiiii et 41
19.4. Using the Gradle PIUGINcoouuiiiii et 42
SRS T [o YT o] o] 1 o TS 42

20. DEVEIOPET TOOIS ...ttt ettt et e e eaans 43
20.1. Property DEefaUILSiiiiiii e 43
20.2. AULOMALIC RESTAITceiiieiiiiii ettt e e e e e 44
Logging changes in condition evaluationccciiiiiiiiiiieiiii e 45

EXCIUAING RESOUICES ..ottt e et a e 45

Watching Additional Pathscoiiiiiiii e 45

DiSabling RESTAIcocviiiiiiii e 46

USING @ THOGEN FilE .oeeni e 46
Customizing the Restart Classloadercoooiiiiiiiiiiii e 46

KNOWN LIMITALIONS ... e et e e ean s a7

20 I T I Y= == [= Lo 47
{0 I T €1 o] o T= S Y=Y 11T £ RN 47
20.5. RemMOte APPIICALIONS ...oevtiiiiiii ettt a7
Running the Remote Client APPlICAtoNcoovuuiiiiiiiieii e 48

R 1[0 (SR oo F- | (P 49

21. Packaging Your Application for ProducCtionccoeuiiiiiiiiieiiiiieeei e 50
P72 g - (o T =T To B = 51
VST oL aTo T =T To LAl {=T= LN] =T PN 52
23. SPHNGAPPICALIONeeitiieieit e ettt e ettt e e e e et e e e ab e e e e een 53
231, StArtUP FAIIUME ..o 53
23.2. Customizing the BaANNETcccuuiiiiiiiiiie e e e e 54
23.3. Customizing SPringAPPIICALIONcoouuiiiiiie e 55

P2 S 11 1= o | =0 1o = Y R 55
23.5. Application Events and LISLENEISccouuiiiiiiieiieiii e e e e 56
23.6. WeED ENVIFONMENTuiiii e e e een s 57
23.7. Accessing Application AFQUMENTS ... cieiuueiiiiiieeeei e 57
23.8. Using the ApplicationRunner or CommandLin€RUNNETcocevvieviiiiiiieeninns 58
23.9. APPHCALION EXIT ...ceietiieiiii et e 58
23.10. AMIN FEALUIES ...uuiieeieiei et e e e e e e e e e e e e et e e s e e e s e e et e e eaneeenns 59

24, Externalized ConfigUurationcccouuieiiiiiiiii e e e e e e e e e aaas 60
24.1. Configuring RaNdOm VAIUESoouuiiiiiiiiieii e 61
24.2. Accessing Command Line Propertiesoveeiiiiiiiiiiiinieiiii e 61
24.3. Application Property FileS ..o 62
24.4. Profile-Specific PrOPErtiESccuuuiiiiiii ettt 63
24.5. Placeholders in PrOPertiesi oo 64

2.1.0.BUILD-SNAPSHOT Spring Boot iii

Spring Boot Reference Guide

24.6. Using YAML Instead Of Propertiescc.uuiiiiiiiiiiiiiiieeci e 64
LOAAING YAML ..ottt e 64
Exposing YAML as Properties in the Spring Environmentcccooeviiiiineennnnn. 65
Multi-profile YAML DOCUMENTScccuuuuieiiiiiieiiiii et e et e et et eeeeii e e e 65
YAML SHOMCOMINGS ...ttt ettt e ettt e e e et e eeeabnaeeees 66

24.7. Type-safe Configuration Propertiesccooiiiiiiiiiiiiii e e 66
Third-party CoNfiQUIatioNcoouuuiiiiiie e 69
(24T F= D= To B =1 o 1 o PSPPI 69
Merging COmMPIEX TYPES ..uciuiniiiiiee et e e e e e e e e eaaes 71
PropertieS CONVEISIONiiiiiiieieii ettt ettt e e e e e eenens 72

ConVerting dUFALIONScoouuiiiiii e 73

Converting Data SIZEScc.uiiiiiiiiii e 74
@ConfigurationProperties Validationccoiiiiiiiiiiiii e 75
@ConfigurationProperties VS. @ValUEovveiiiiiiiieiiii e v e e 76

P T o (o) 111 OO P PP PPRPPPPPTTIN 77

25.1. Adding ACtiVe Profilesiiiiiiie e 77

25.2. Programmatically Setting Profilescooiiiiiiiii e 78

25.3. Profile-specific Configuration FileSccuiiiiiiiiiiii e 78

PG T Moo o1 o E PSP PPPPTTRSPPIN 79

26.1. LOG FOMMAL ..ottt e 79

W I ©o] 4 1Yo LT @ 11 1 U 79
1670] (o] cedo e [=To @11 o1 | ANUT PSPPSRI 80

26.3. File OULPUL ...t e et e et e e e 81

26.4. LOQ LEBVEIS . .oeeiiii e 81

26.5. LOG GIOUPS ..evuieiiieiei ettt ettt ettt e e et et 82

26.6. Custom Log COoNfIgUIatioNccouuiiiiiiiiie it 82

WL T A W Te | o= Lo L T (=] 1 1= o] o 84
Profile-specific CoNfIQUIationccoouuiiiiiiiiii e 85
ENVIroNmMeNt PrOPEITIESoovuiiiiiiii e 85

27. Developing Web APPlICALIONSoiiiiiiiii e e e e e e 86

27.1. The “Spring Web MVC Framework”uoiiiiiiiiieiiiii e 86
Spring MVC AUtO-CONFIQUIALIONccovuiiiiiiiie e 86
HUPMESSAGECONVEITEIS ...ivuiiiiie it e e e en 87
Custom JSON Serializers and DeserialiZerscooouuuiiiiiiiiiiieiiiieee e 87
MESSAGECOUESRESOIVET ... it eeaees 88
3 - Lo O] 01 (=] o | APPSR 88
WEICOME PAGE ...ttt et et e e et e e e e eees 20
L1013 (o] 3 T == 1Y/ oo) o [90
Path Matching and Content Negotiationcccooviiiiiiiiiciii e 90
ConfigurableWebBindingInitializer ... 20
Template ENQINES ... 91
L o] gl o = o [T Vo 91

CUSLOM ENTOr PAgesoiieiiiiiiiiii et 92
Mapping Error Pages outside of Spring MVCcccooiiiiiiiiiiiiiiiiecieees 93
SPriNG HATEOAS ..o e e e e e e e e e aaeees 93
CORS SUPPOI ..ttt ettt et e e eenas 94

27.2. The “Spring WebFIuX Framework”ooi i 94
Spring WebFlux Auto-configurationcooeviiiiiiiiiiic e e 95
HTTP Codecs with HttpMessageReaders and HttpMessageWriters 96
S = L[O 1 1= o | 96

2.1.0.BUILD-SNAPSHOT Spring Boot iv

Spring Boot Reference Guide

Template ENQINES ... 97
=T (o g = F= T o |11 oo [PSP 97
CUSIOM EITOr Pages ..vniiiiiii i 98

WED FIILEIS ..t e e 98
27.3. JAX-RS AN JEISY ..ovniiiiiii it 98
27.4. Embedded Serviet Container SUPPOIToiiunieiii e e e e e e e e e e 99
Servlets, Filters, and lISTENEIScoouuiiiiii e 100
Registering Servlets, Filters, and Listeners as Spring Beans 100

Servlet Context INItANZAIONuiiiiiii e 100
Scanning for Servlets, Filters, and liStenersc.oooiiiiiiiiiiieiiiii e, 101

The ServletWebServerApplicatioNnConteXtvveiiiiiiiiiiiiiiei e 101
Customizing Embedded Serviet CONtaiNersccocevieiiiiiiiiieiiii e, 101
Programmatic CUStOMIZAtioNcoveviiiiiiiiiiieiiii e 102
Customizing ConfigurableServletWebServerFactory Directly 102

JSP LIMITALIONS ...ttt ettt e e e e et e e e e e eenee 103

28, SEBCUIMLY ...eeeite ettt ettt ettt et ettt ettt e e et e e et et e et e b et e e e e b e e eaans 104
28.1. MVEC SECUIMLY ettt e ettt ettt e e et e e e et e e e e et e e e eaan s 104
28.2. WEDFIUX SECUILY ..uiitiiiii e e e e e e e e e eeen 105
28.3. QAULNZ .. e et aaeeaaaaa 105
L 1= o | 105
OpenID Connect Login client registrationccooveviieiin i 106

OAuth2 Authorization Code client registrationccccooeveviiieiiiiineeiinnnnnn. 107

OAuth2 client registration for common providersc..oocveiieiiiiinneeiinnnnn. 107

RESOUICE SEIVET ...ouiiiiiiiii e 107
AULNONIZALION SEIVET ...t et e e e eees 108
28.4. ACLUBLOT SECUILY ...eieeeieieiit ettt ettt e et e et e e e e s 108
Cross Site Request Forgery ProteCtionccoeceviiiiiiiiiieiiiiecie e 108

29. Working with SQL Dat@bDaseSccuuuiiiiiiiiiaiiiiiiee ettt e et eeeai e eeens 109
29.1. Configure & DAtaSOUICEoiiiiiiiiiiiiii et e eeaans 109
Embedded Database SUPPOITcc.uiiiiniiiiii e e e 109
Connection to a Production Databaseccooiiiiiiiiiiiiii e 110
Connection to @ JNDI Dat@SOUICEcccuuuiiiiiiiieiiiiia et eeii e e eeens 111

ZAS B UL g o I o o To =T 491 o] = = 111
29.3. JPA and Spring Data JPA ... 112
ENLLY ClASSES «.oiiiiiiiii ettt 112
Spring Data JPA REPOSIHONEScivveiiiiieiii et e e e e e e e 113
Creating and Dropping JPA Databasescccoooiviiiiiiiiiiiiic e 114
Open EntityManager iN VIEWviiiiiiieiii e 114
29.4. SPring Data JDBCcc.uiiiiiiiii e 114
29.5. UsiNg H2's WeD CONSO0IEuiiiiiiiiee e 115
Changing the H2 Console’s Path ..o 115
29.6. USING JOOQ .. eiiieeiiiiii ettt ettt e ettt e e e e e e e ennnae 115
(70 [€1 =T o 1T =11 o] o [P P 115
USING DSLCONIEXE ...ttt ettt ettt e et e et eeeaan s 116
JOOQ SQL DIIECT ..vvviieeeee ettt e e e e e e e ennee 116
CUuStOMIZING JOOQ ..cotneiiiiii ettt et 116

30. Working with NOSQL TeChNOIOGIEScviiiiiiiiiiii e 118
30,1 REAIS ..ttt ettt e e e enraa 118
CoNNECHNG 10 REAISuiiiiiiiieee e 118
30.2. MONGODB ...t 119

2.1.0.BUILD-SNAPSHOT Spring Boot v

Spring Boot Reference Guide

Connecting to a MongoDB Databasec..ovveiiiiiiiiiiiiiiccii e 119

T lo To) =T 4 0] o] = L= PP 120
Spring Data MoNgODB REPOSITONESccuuiiiiiieiiieiiii e e e e e 120
EMbedded MONQOiiiiiieeiii e 121
0.3, N ittt 121
Connecting to a Neo4j Databasec..oociiiiiiiiiiiiii e 121
Using the Embedded MOOEcooouiiiiiiiiic e 122
NEOAJSESSION ..eveeiiii ettt e e e e 122
Spring Data Neo4j REPOSIHONIEScvvviiiiiiiii e 122
B0.4. GeIMFINE e e 123
G085 T Yo 1 123
(O] a1 g T=Tox 119 To N (o TS Yo | NP 123
Spring Data Solr REPOSITOMESviiiiiiieiiiii et 124
30.6. ElQSHCSEAICIiiiiiei e e e 124
Connecting to Elasticsearch by REST cClientsccooooiiiiiiiiiiiiiiie e 124
Connecting to Elasticsearch by USiNg JesStccooviiiiiiiiiiiiiiiiiii e, 124
Connecting to Elasticsearch by Using Spring Datacccoveviiiinieiiiiineeeiiinnnnn. 125
Spring Data Elasticsearch RepOSItOriesccocovveiiiiiiiiiiici e 125

1O B O 11T Vg [[- U PTRP 125
ConNNECiNg t0 CASSANUIA ...ceevvtieeiii et e e e e et eeaia e eees 126
Spring Data Cassandra REPOSILONESvevvuieiiiiiiiiieiiie e r e 126
30.8. COUCNDASE ..ot e e 126
Connecting to COUCNDASEooiiiiii e 126
Spring Data Couchbase REPOSItONEScc.uiviiuniiiiiieiie e 127
30,9, LD AP . e e 128
Connecting to an LDAP SEIVELiiiiiiiiiiei et 128
Spring Data LDAP REPOSIHOINIEScvviiiiiiiii e 128
Embedded IN-memory LDAP SEIVETocieuiiiiiiiiiiie et 129
G0 5 0 R 03 0 129
Connecting t0 INFIUXDBuiiiiiiii e e e e e e aens 129

3 I OF= Tl o || o o PP UPPPT 130
31.1. Supported Cache PrOVIAEISiiiiiiiieiii et 131
1= g1 o PP 132
JCACKNE (JSR-L07) ettt e e e ettt e e e e e e e e e bbb e e e e e e aeeneaaas 132

L] L= Vo 12 133

[P2 4= (o 1] USRS 133
INFINISPAN et ettt 133
COUCKHDASE ... e 133
REAIS ..t 134
CaffEINE ..o e 134
SIMIPIE < e 135
NN e 135

2. IMBSSAGING vttt ettt ettt a e 136
0 TN 11V 1 SO 136
Yo A1V (@ T U o] o Yo o PPN 136
AEMIS SUPPOIT ...ttt e et e et e eeeaa s 137
Using a JNDI CONNECHONFACIONYiiiiiiiiiiiiiii e 138
SENAING @ MESSAQE ...civiiiiiii et 138
RECEIVING 8 MESSAQJE .. .cciiiiiiiiiii et 138
32,2, AMOP ..ot e 139

2.1.0.BUILD-SNAPSHOT Spring Boot Vi

Spring Boot Reference Guide

33.

34.

35.
36.
37.

38.
39.
40.
41.
42.
43.
44,

RabbitMQ SUPPOIT ... 139
SENAING 8 MESSAGE ... ittt 140
RECEIVING @ MESSATEvuiiiiiiiii i et e e e e e et e e e e e e aenas 141

32.3. Apache Kafka SUPPOITccoouiiiiiii e 142
SENAING 8 MESSAGE ...ueiiiiiii ettt e 142
RECEIVING @ MESSATEvuiiiiiiiii i et e e e e e et e e e e e e aenas 143

Kafka StreamS ... e 143
Additional Kafka Propertiesovoiiiiiioiiii e 144
Calling REST Services with Rest Tenpl at €cooiiiiiiiiiii e 145
33.1. RestTemplate CUSIOMIZALIONuiiiiitiieiiiie e 145
Calling REST Services with WeDCl i €Nt oo 147
34.1. WebClent RUNLIMEcoiiiiiiiiii ettt e e e 147
34.2. WebClient CUSIOMIZATIONocuiiiiiiii e e 147
V2= 1o =T) o 149
SeNAING EMAIl ... 150
Distributed Transactions With JTA ... e e ea e 151
37.1. Using an Atomikos Transaction Managerveveuuuniereiiiieeeiiiniee et eeeiinaeeeens 151
37.2. Using a Bitronix Transaction Managerccocvuiiiiiiieeiiiieeiieeeeeenee e eeaneeeae 151
37.3. Using a Java EE Managed Transaction Managercceuureererinnneieninneeeennnnns 152
37.4. Mixing XA and Non-XA JMS CONNECLIONSociiuiiiiiiiiiieeiiiiee e 152
37.5. Supporting an Alternative Embedded Transaction Managerccccocevvneenn. 152
[P2 T (o7] PP 154
L@ U= 4 w400 Yod 1= o [1] 1= 155
Task Execution and SChedulingcouiiiiiiii e 157
SPHNG INEEGIALION ...ttt et e e e et eeeae s 158
S o] g1 0o RST=2S1S] Lo o PSPPSR 159
Monitoring and Management OVEr JMXiiiiiiiiiiiiiiii e e e e e e e e ees 160
LI (] 0L TP TOPPTT 161
44.1. Test SCOPE DEPENUENCIESciiieiieiiiii ettt et 161
44.2. Testing Spring APPIICAtIONScciviiiiii e 161
44.3. Testing Spring Boot APPlICALIONSccouuuieiiiiiiieiiii e e 161
Detecting Web AppPlICAtioN TYPE ...coouviiiiiiiii e 163
Detecting Test Configurationcccceuiiiiiiiiiiin e e e e aens 163
Excluding Test Configurationoooieeiiieiiiieeee e 163
Testing with @ MOCK eNVIFONMENTcoooiiiiiiiiii e 164
Testing With @ FUNNING SEIVETiiii i 165

USING JIVX ettt et 166
Mocking and SPpYiNg BEANScooiuiniiiiiiiii i 166
AULO-CONFIGUIEA TESES ..ivviiiiii i e e e e aens 167
AUto-coNfigured JSON TESES ..ouuuiiiiiiiiie it 168
Auto-configured SPring MVC TESESuuiiiiiiieiiii e 169
Auto-configured Spring WebFIUX TeStScoviviiiiiiiiin e, 171
Auto-configured Data JPA TESISuuiiiiiiiii i 172
Auto-configured JDBC TESESciiiiiiiiiiiii e 173
Auto-configured Data JDBC TESS ...ccuuiiiiiiiiiieieii e e e 174
Auto-configured JOOQ TESIS ..ccuuuiiiiiiiii et 174
Auto-configured Data MoNgODB TESISviiiiiiiiiiiiiie e 175
Auto-configured Data NEOA] TESES ...ccuuiiiiiiiiii e e 176
Auto-configured Data RediS TESESccuuuiiiiiiiieiiiii e 176
Auto-configured Data LDAP TESIS ...cuuiiiiiiiieeeii e 177

2.1.0.BUILD-SNAPSHOT Spring Boot Vii

Spring Boot Reference Guide

Auto-configured REST CHENSccoouiiiiiiiiiieece e 178
Auto-configured Spring REST DOCS TESES ...cciiuiniiiiiiiiieiiii e 178
Auto-configured Spring REST Docs Tests with Mock MVC 178
Auto-configured Spring REST Docs Tests with REST Assured 179

Additional Auto-configuration and SICINGccouiiiiiiiiiiii 180

User Configuration and SICINGoooviiiiiiiiiii e 181

Using Spock to Test Spring Boot APPliCatioNSuvveiiiiiiieeiiiineeciieeeeiee, 181

N I Y G 11T 182
ConfigFileApplicationContextINitializercovviiiiiiiiii e 182
TESIPIOPEITYVAIUESouiiiiiii et 182
OULPULCAPIUIE ..ottt ettt et et e et e e e eaa e 182

BIEE R TS =]] o= L= 183

A5, WEDSOCKELS ...t e et e e et aa s 185
TV =T TS Y [= 186
47. Calling Web Services with WebSer vi ceTenpl at eccoovvviiiiiiiiiiii e, 187
48. Creating Your Own AUto-CONfIQUIAtIONcoovvuuiiiiiiiieiii e 188
48.1. Understanding Auto-configured Beanscooveiiiiiiiiiiiiiiieiii e 188
48.2. Locating Auto-configuration Candidatescccceoviiiiiieiiiiiiiii e 188
48.3. Condition ANNOTALIONS ... icuiiiii et e e e e e e ean s 188

L0 P TS @ o 11T o 1= N 189

Bean CoNGItIONSoieiiiiiii e 189

Property CONGItIONScoouuiiiiiii et e e e e ent e eees 190

TS0 10 o =T @0 g o [11o 1 1 190

Web Application ConditioNScociuiiiiiiiii e e 190

SPEL EXPression CONAItIONSccouuuiieiiiieeiiii et 190

48.4. Testing your AUtO-CONFIQUIAtIONveiiiiiiiiiiiie e 190
Simulating @ WED CONEXLuuiiiiicii e e 191
Overriding the Classpath ... 192

48.5. Creating Your OWN SEAIETuuiiiiiiii et 192

NN F= U 11T 192

aut oconf i gure ModUIE ... 192

Starter MOAUIEcoen e e e 193

e T o 1T =] o] o A 194
49.1. REQUITEIMENTSeiietiieeiiti ettt ettt e et e et e et et e et et e e e et e e e ena s 194
49.2. NUI-SAIELY ..ttt 194
49.3. KOUIN AP <. ettt r e 195
FUNAPPIICALION ..ottt ettt ettt e e e e eeanns 195

T (= 70 1 195

49.4. Dependency ManagEMENTceuuieiuueei e et e et ee st e e e e e e et e e eae e et eeaaeeanaees 195
49.5. @onfigurati ONProperti S ..o 196
e G =T 1] o PP 196
A9.7. RESOUICES ...uiitiiiiiie ittt ettt et e e s e e e s e s e e e e s et e r e e e aanees 196
FUINET TEAAING ... ittt 196

EXAMIPDIES e e 197

50. What 10 REAU NEXEieeiiiiiiiiiie ettt e e et e e et a e e e e e eennees 198
V. Spring Boot Actuator: Production-ready fEaturescoeeiiuiiiiiiiiiiieeii e 199
51. Enabling Production-ready FEAtUIEScoouuiiiiiiiiieiii e 200
o7 = o [01 201
52.1. ENabling ENAPOINTSiiiiiiiiiiii et 202
52.2. EXPOSING ENAPOINTSiiiiiiiiiiii e e 203

2.1.0.BUILD-SNAPSHOT Spring Boot viii

Spring Boot Reference Guide

52.3. Securing HTTP ENAPOINTScoouiiiiiiii et 204
52.4. Configuring ENAPOINESuuiiiiiii e 205
52.5. Hypermedia for Actuator Web Endpointscccocoviiiiiiieiiin e 205
52.6. CORS SUPPOIT «..eniiiiiite ittt et e e eeens 206
52.7. Implementing Custom ENAPOINtScouuiiiiiiiiiiii e 206
RECEIVING INPUL ...t e e e e e e e et e e e e eees 206
INPUL LYPE CONVEISION ...eiitiieiiii ettt 207

Custom Web ENAPOINTS .. .ccouuiiiiiiieieii et eaaens 207
Web Endpoint Request PrediCatescoccivieiiiiiiiiieiii e 207

Pt . s 207

o I I I 211 1 0T o 207
CONSUMES ..oeiiiiiiiii e e 208

[0 To 11 o PP 208

Web Endpoint RESPONSE StAtUSc.uueiiiiiieiiiiiieeeeci e 208

Web Endpoint RanNge REQUESESociiiiiiiiiiiiiieeeeee e e e e s 208

Web ENAPOINt SECUNLY ...coovviiiiiii e 208

Servlet @NAPOINESuuiiiii e 209
Controller ENAPOINTSiiiiei e e e s 209
52.8. Health INformationccoouiiiiii e 209
Auto-configured HealthINdiCatorsoviiiiiiiiiii e, 210
Writing Custom HealthINdicatorsooiiviiiiiie e 210
Reactive Health INdICAtOrscoouiiiiiiii e 211
Auto-configured ReactiveHealthIndicatorsccccooviiiiiiiiiiiiii e 212
52.9. Application INfOrMAatioNccouuiiiiiiiiii e e e e e e 212
Auto-configured INFOCONTHBULOIScoovviiiiii e 212
Custom Application INfOrmMationcccoiriiiiiiiii e 213

Git Commit INFOrMALIONcceviiiiiii e 213
BUIld INFOrMALIONeeee e e 213
Writing Custom INfOCONEIDULONSiiiiiiiiei e 214

53. Monitoring and Management OVer HTTPcoiiiiiiiii e 215
53.1. Customizing the Management Endpoint Paths ..., 215
53.2. Customizing the Management Server POrtccooviuiiieiiiinieii e 215
53.3. Configuring Management-Specific SSLcccoviiiiiiiiii i 215
53.4. Customizing the Management Server AdAressc.covveiiiiiiieiiiiineeee e 216
53.5. Disabling HTTP ENAPOINTSiiiiiiieiiii et 216
54. Monitoring and Management OVEr JMXiiiiiiiiiiii e e 217
54.1. Customizing MBean NAIMEScoouuiiiiiiiiiieii e 217
54.2. Disabling JIMX ENAPOINEScouuiiiiiiiiiieiiii e 217
54.3. Using Jolokia for IMX over HTTP ..o 217
CUSEOMIZING JOIOKIA ..ttt e enees 217
Disabling JOIOKIAccuuniiiiiiiei e 218

LY T o o o 1] = T PRSP 219
55.1. CONFIQUIE 8 LOGUEN ...niiiitiieeiiit ettt ettt e e ettt e e e et e e e en e e eenbn e eees 219
oL 1V 1= Tt 220
oL T 1=] o) = Ut (=T o 220
56.2. Supported MONItOrNG SYSIEIMScciiiiiieiiiii e 221
N 1 - T PP 221

[0 1= (o o o PP 221
DYNALIACE .. .eeiiiieieee et 221
=] T 222

2.1.0.BUILD-SNAPSHOT Spring Boot ix

Spring Boot Reference Guide

GANGIIA .. eeee et 222

(1= o] 11 (= PP 222

IEIUX e e 222

1 TSP PR SSUPPUPRRTIN 222

N L= T = T 223
PromethEUSo e 223

SIONAIFX e e e e eean 223

SIMIPIE e e 224

SEALSD .ot 224
WAVETTONT ..o e e e e et e e e e e eens 224

56.3. SUPPOIEA MELIICS ...eeeiiiiiiii et e e et e e es 224
SPriNG MVC MELIICS .ovuniiiiieiie et e e e e e e e e e e e e eeas 225

SPring WEDFIUX METICSoovuiieiiiiii e 226

L I I I O 1= o YT ot 226

CACNE MEIICS ..t e e e e e e e e 227
DataSOoUIrCE MELIICSceeetiieeeiii ettt e e et e e et e e e ent e aees 227

HIDEINAtE MEIIICS ...iiie i e e e e eeees 228

Rz 1] o1 11Y (@ T Y11 1 o PN 228

56.4. Registering CUSIOM MELICSccuuuiiiiiiiieietie et e s 228
56.5. Customizing individual MetriCSoeiiiuiiiiiiii e 228
(000] 0] 0410 I 7= ST PP 229
Per-meter PrOPEILIEScoouii i 229

56.6. MELrCS €NUPOINT ...eevtiiieii ettt et e e 230

B7. AUAITING et e et e e e 231
TS I o I I - T T RSP UPP PP PPPPTR 232
58.1. CUSIOM HTTP trACING «..uueiiiitnieiiiii ettt et e e et e eeaens 232

oYe I o o Tt YR 1Y o 71 (o) 1 o P 233
59.1. Extending CoNfIQUIALIONc..uuiiiiiiiieiiii et 233
59.2. ProgrammatiCallyccoouuuiiiiiiiiei et 233

60. Cloud FOUNAIY SUPPOITiiiieiit e e e e e e e e e e e e e et e e et e e et e e eaneeeaes 234
60.1. Disabling Extended Cloud Foundry Actuator SUPPOItc.euuvevieiiniereiiiieeennnn, 234
60.2. Cloud Foundry Self-signed Certificatescooveiiiiiiiiiiiiieeee e 234
60.3. Custom CONtEXE PALN ...cvvuii i 234

B1. What 10 REAM NEXL ...t et et e e e e e e eeens 236
VI. Deploying Spring Boot APPlICALIONSuiiiiiiiiie e 237
62. Deploying t0 the CloUdoiiiiiiii e e 238
B2.1. ClOUd FOUNIY ...ttt ettt e e et e e et e e e e e e eenaaeeees 238
BiNdiNG t0 SEIVICES ...vuiiiiiiii e 239

B2.2. HEIOKU ... et 240
B2.3. OPENSIITL ettt ettt aaaaeaa 241
62.4. AMAzon Web ServiCesS (AWS) ..o 241
AWS EIastiCc BEANSIAIKoiieiiiiiiiiii e 241

Using the Tomceat PIAtformiviiiiiiiii e 241

Using the Java SE PIatformccooiiiiiiiiiiiii e, 241

SUMIMAIY ettt e et e e e e e e et e e e e et e e e et e e et aans 242

62.5. Boxfuse and Amazon Web ServiCescoviiiiiiiiiiiiii e 242
B2.6. GOOGIE ClOUMuiieiiiiee et e 243

63. Installing Spring Boot APPlCALIONScouuiiiiiiiii e 245
63.1. Supported Operating SYSIEIMScocuuiiiiiiiieiii e 245
63.2. UNIX/LINUX SEIVICES ..uuiiiieiiiieiii et e e et e e e e s e et e e e s e e et s e et e e e s enaneeenneeeens 245

2.1.0.BUILD-SNAPSHOT Spring Boot X

Spring Boot Reference Guide

Installation as an i ni t. d Service (SYStEmM V)coviiiiiiiiiiiiiiiece e 245

Securing an i Nit. d SEIVICEccoiiuiiieiii e 246

Installation as a SYSt €M SEIVICEcccuuiiiiiiiiii e 247
Customizing the Startup SCrPLoouuniiiii e 248
Customizing the Start Script when It Is Writtencoooooiiiiiiiiii, 248

Customizing a Script When It RUNSoooiiiiiiiiiieeee e 249

63.3. Microsoft WINAOWS SEIVICESccoiiiiiiiiiiiiieeiii ettt 250
VLY T A (o T == To L= 252
RV LTS o o T = T Yo L A 4 253
B5. INSTAIING The CLI ...iiiii et 254
B6. USING the CLI oouuiiiiii ettt e e e 255
66.1. Running Applications with the CLIcoiiiiii e 255
Deduced “grab” DEPeNUENCIESuuieiiiiiiieeiiiie ettt 256

Deduced “grab” COOIAINALEScocuuuiiiiiiie e 257

Default Import STAtEMENTSiii e e 257
Automatic Main Method ... 257

Custom Dependency Managementcoouuuieiiiiiieieiiee e e eeaeens 257

66.2. Applications with Multiple Source Filesc.cooeiiiiiiiiii e, 258
66.3. Packaging Your ApPlCationoieiiiiiiiiiii e 258
66.4. Initialize @ NeW Projectcoouuiiiiii e e 258
66.5. Using the Embedded Shell ..o, 259
66.6. Adding EXtensions t0 the CLIooiiiiiiiiii e 259

67. Developing Applications with the Groovy Beans DSLccoveiiiiiiiiiiiiiiieiiieeceie 261
68. Configuring the CLI with settings. XM ... 262
69. What t0 REAM NEXL ...t e e e e e e e e e e eeens 263
VI BUIlD tOO] PIUGINS ..ot et e e et e e et e e e et e e e eaba e eeeee 264
70. Spring Boot Maven PIUGINiiiiieii e e e e e e e e e e e et e e aan e eeas 265
70.1. INClUdING the PIUGIN .euuiiiii e 265
70.2. Packaging Executable Jar and War Filesccoooiiiiiiiiiiiii e 266

71. Spring Boot Gradle PIUGINoiiiiieiii e e e e e e e e e eaas 267
72. Spring Boot ANtLID MOGUIEcooiiii e 268
72.1. SPring BOOt ANt TASKSceuuiiiiiiiiie ettt 268
SPriNG-D00t: BXEJ A& .oniiiiiiiii i 268

EXAMIPIES . e 269

72.2. spring-boot: findmai NCl aSSoiiiiiiiiiei e 269
= 1] o] 1= PN 269

73. Supporting Other BUild SYSIEMSccouuiiiiiiiiei e 270
73.1. Repackaging ArCRIVES ...t e 270
73.2. NeSted LIDrariesuuuuiiiiii ettt 270
73.3. FINAING @ MAIN CIASScoouiiiiiiiii et 270
73.4. Example Repackage Implementationcoceuorieiiiiinieiiiiinee e 270

T4. WhHat 10 REAU NEXEiieeiiiiiiiiiie et e e et e e e e e e e e e e e e ennees 271
IX. THOW-TO" QUIAES ..ttt ettt et e et e et et e et et e e e ena s 272
75. Spring Boot APPIICALIONuuiiiiiie e 273
75.1. Create Your Own Failur€ANAlYZEroovuieiiii e, 273
75.2. Troubleshoot AutO-CONTIGQUIALIONcceuuiiiiii e e e 273
75.3. Customize the Environment or ApplicationContext Before It Starts 274
75.4. Build an ApplicationContext Hierarchy (Adding a Parent or Root Context) 275
75.5. Create a Non-web APPLICALIONovieieiiiiii e 275

76. Properties and Configurationuuii oo 276

2.1.0.BUILD-SNAPSHOT Spring Boot Xi

Spring Boot Reference Guide

76.1. Automatically Expand Properties at Build Timeccooiiiiiiiiinieiiiiieeeiieeees 276
Automatic Property Expansion Using Mavenccooveeviiinieiiiiineecciieeecie 276
Automatic Property Expansion Using Gradlecoccoveiiiiiiiiineiinecneceeeee, 277

76.2. Externalize the Configuration of Spri ngApplicati onccccciiiiiiiiiiiiiiinnnnn. 277

76.3. Change the Location of External Properties of an Applicationccccoeoees 278

76.4. Use ‘Short’ Command Line ArgumENLSc..oeiiiiiiiiiieiiiieiieeee e e e e e 278

76.5. Use YAML for External Propertiesoveeieuiieiiiiiieeiii et e e 279

76.6. Set the Active Spring Profilescoiiiiiiiiii 279

76.7. Change Configuration Depending on the Environmentccooevviiviiiineennen. 280

76.8. Discover Built-in Options for External Propertiescccoovvveeiiieiiiiiiieiiiiiieeeens 280

77. EmMbedded WED SEIVEISuu et 281

77.1. Use ANOtNEr WED SEIVETcooiiiiiiiiiie et 281

77.2. Disabling the WeD SerVEr ..o 282

77.3. Change the HTTP POt ... 282

77.4. Use a Random Unassigned HTTP POrtc.cciiiiiiiiii e 282

77.5. Discover the HTTP Port at RUNIMEcooouiiiiiiiiie e 282

77.6. Enable HTTP ResSponse COMPIESSIONuuieiiiuiieiiiieeeiiineeeeiin e eeiieeeaeiinens 283

T7.7. CONFIQUIE SSL .uuiiiiiiiii i e e e e e e e e e e et e e e e e et e e aanaees 283

T77.8. ConfIguIe HTTP/2 .o 284
HTTP/2 With UNAErtOWeeiciiieei et e e e e e e e eens 284
HTTP/2 WIth JEIY ..o 284
HTTP/2 With TOMCAL ...t e e 284
HTTP/2 with ReaCtOr Ntc..uiiiiiiiiii e 284

77.9. Configure the WED SEIVEN ... i 285

77.10. Add a Servlet, Filter, or Listener to an Applicationcccooveveviinieieiinienennnn. 285
Add a Servlet, Filter, or Listener by Using a Spring Beanccccoeveveivnneeenn. 286

Disable Registration of a Servlet or Filtercccoeeiiiiiiiiii e, 286
Add Servlets, Filters, and Listeners by Using Classpath Scanning 286

77.11. Configure ACCESS LOGGING .vuuiieiitnieeiiii et e et e et e et eeeet e e eeai e eeees 286

77.12. Running Behind a Front-end ProxXy SEIVENccoiiiuiieiiiieiiiieeieeeiieeeieeeaeens 287
Customize Tomcat's Proxy Configurationc.oceeuuiiieiiiiineeiiiiieeeiieeeeeinne 287

77.13. Enable Multiple Connectors with TOMCALcoeeviiiiiiiiiii e, 288

77.14. Use Tomcat's LegacyCoOOKIEPTOCESSOIcvvuiiiiiieiii e e e e e e e 288

77.15. Enable Multiple Listeners with Undertowccooiieiiiiiiniiiiiiieeeceeeeie 289

77.16. Create WebSocket Endpoints Using @ServerEndpointccoeevivveviiinnnenenns 289

4= TS o112 o T Y/ Y SN 290

78.1. Write @ JSON REST SEIVICEciiiiiiiiiiii et 290

78.2. Write @an XML REST SEIVICE ...cvuuiiiiiieiieeiiiieeie et e e e e e e e a e e e eanneaetaeeanaeees 290

78.3. Customize the Jackson ODbJECIMAPPENcceuniiiiiiiiii e 291

78.4. Customize the @ResponseBody ReNeringcooveveuiiieiiiiinniieieeeeii e 292

78.5. Handling Multipart File Uploadsoiiiiiiiiiiiiiie e 292

78.6. Switch Off the Spring MVC DispatcherServietccccooveiiiiiiii i, 292

78.7. Switch off the Default MVC Configurationccccuiiiiiiiiiiniiiiieece e 293

78.8. CuStOMIZE VIEWRESOIVEISuiiiiiii e 293

79. Testing With SPring SECUILYceuuiiii i e e e 295
B0, IS Y ittt 296
80.1. Secure Jersey endpoints with SPring SECUILYcccuiviiiiiiiiiiiiiiieei e, 296
BL. HTTP ClIENTS ..ttt r e e e et b e e e e e et e e e rr b e aeeeeeeennnaes 297
81.1. Configure RestTemplate t0 USE & ProOXYccccuuiiiiiiiiiiiiiiiiiieeiiieeecei e 297
1S 2 Moo o1 o PSP 298

2.1.0.BUILD-SNAPSHOT Spring Boot Xii

Spring Boot Reference Guide

82.1. Configure Loghack fOr LOGOINGueieiirniiiiiiieieii e 298
Configure Logback for File-only OULPULcooeviiiiiiiiie e 299

82.2. Configure Log4j for LOGQINGuueiiunieiiieiii e e e e e e e e aeas 299

Use YAML or JSON to Configure LOG4) 2ooveeiinieiiiiiieeeii e 300

S T D = 1= T o o =] 301
83.1. Configure a CuStOM DataSOUICEcc.uieiuiiiiiiieii e e e e e e e e eaens 301
83.2. Configure TWO DataSOUICESuuuiiiiiiieeiiii ettt ettt eeaanns 303
83.3. Use Spring Data REPOSILONIESiiiiiiiiiiiiiii e 304
83.4. Separate @Entity Definitions from Spring Configurationccccocceviiinnennn.n. 304
83.5. CoNnfigure JPA PrOPEItIESccuutiiiiiiii ettt 304
83.6. Configure Hibernate Naming Strategycooeveeiiieiiiiiiieiiiie e 305
83.7. Use a Custom EntityManagerFactorycccceieiiiieiiiieeiii e e e 306
83.8. Use TWO ENtItYMANAGETScoouuuiiiiiiieee ittt 306
83.9. Use a Traditional persi stence. xm File ..., 307
83.10. Use Spring Data JPA and Mongo RePOSItOriesccccoveviiiieeiiieiiiieeiiieeeieeenn, 307
83.11. Expose Spring Data Repositories as REST Endpointcccoovevviiiiieiiiinnenenns 307
83.12. Configure a Component that is Used by JPA ..o 307
83.13. Configure jOOQ with TWO DataSOUICESceevvviiiiiieiiiieiiii e e e 308

84. Database INtIAlIZAtIONiiiiiei e e e 309
84.1. Initialize a Database USING JPA ... 309
84.2. Initialize a Database Using HIibernatec.cccoviiiiiiiiiii i, 309
84.3. Initialize @ Dat@baSecc.uiiiiiiiiiii e 309
84.4. Initialize a Spring Batch Databasec.ocoviiiiiiiiiiiieii e 310
84.5. Use a Higher-level Database Migration TOOIcccoeeiiiiiiiiiiiiiieeie e 310
Execute Flyway Database Migrations on Startupcccooeevevvinieiiiiiineeeiinneeenn. 310

Execute Liquibase Database Migrations on Startupcccoovevveiineiiiiinneeeinnnnnn. 311

ST 1Y LYY Y= To 1T TS 312
85.1. Disable Transacted JMS SESSIONcccuuiiiiiiiiiiieiiie e 312

86. BatCh APPIICALIONS ...t e 313
86.1. Execute Spring Batch JObs on Startupccocoviiiiiiiiiie e 313

S X o! (U= 1o PP PTRUPTRN 314
87.1. Change the HTTP Port or Address of the Actuator Endpointsccccceeeeeee. 314
87.2. Customize the ‘whitelabel’ Error Pageccoocoiiiiiiiiiii e 314
87.3. Sanitize SeNnSIDIE VAIUESiiiiiiii e 314

CT S IS T o 1Y 315
88.1. Switch off the Spring Boot Security Configurationccoooeviiiiiiiiiiiieeiineen, 315
88.2. Change the UserDetailsService and Add User ACCOUNEScoeeeveieinieennannnnn. 315
88.3. Enable HTTPS When Running behind a Proxy Serverccccoooveviiniiiiiiinnenes 315

TS T 01 11]] T S 316
89.1. Reload StatiC CONENTuiii e e e eeaaeas 316
89.2. Reload Templates without Restarting the Containerocoevivieiiiiinieieinnnnnn. 316
Thymeleaf TEMPIAIESciiiiii e 316
FreeMarker TEMPIALEScoouuuiiiiii et 316

GrOOVY TEMPIALES ..ot ettt e e et e e e eba e eeees 316

89.3. Fast Application RESIAINScoiiiiieiiiii e e 316
89.4. Reload Java Classes without Restarting the Containerccccoeeveviieeiinnnnnen. 317

LSO TR = 1o PP 318
90.1. Generate Build INfOrMationoocoiiiiiiiiiiii e 318
90.2. Generate Git INfOrmMationooeeeiiiiii e 318
90.3. Customize Dependency VEISIONSviieuuuniiiiiiii et eeei et e e e eeeeanns 319

2.1.0.BUILD-SNAPSHOT Spring Boot Xiii

Spring Boot Reference Guide

90.4. Create an Executable JAR with Maven ..o 319
90.5. Use a Spring Boot Application as a Dependencycccevvveiieieneeiieviineeeneennn, 320
90.6. Extract Specific Libraries When an Executable Jar Runscc..ccoev e, 321
90.7. Create a Non-executable JAR with EXCIUSIONScooviiiiiiiiiiiii e 321
90.8. Remote Debug a Spring Boot Application Started with Mavencccocevvnee. 322
90.9. Build an Executable Archive from Ant without Using spri ng-boot-antlib 322

91. Traditional DEePIOYMENTcoouuiiiii et 324
91.1. Create a Deployable War Filecoiiiiiiiiiiii e 324
91.2. Convert an Existing Application to Spring BOOtccooeviiiiiiiiiii e, 325
91.3. Deploying @ WAR 10 WEDLOGICcvvvvineiiiiiieieiii et 327
91.4. Use Jedis Instead Of LEHUCEocvuuiiiiei i e e e 327

DO Y o o 1= Lo [T P 329
A. Common application PrOPEITIEScccuuuuieiiiiii e e et et e et e e eene e eees 330
B. Configuration MetadAtacuuuiiiiiiii et 360
B.1. Metadata FOMMALooeiiiiiieiiii e e e 360
Group ALINDULES ...t et 361

Property AtrDULEScooiiii e 362

HINE ALEHDULES oo e 364

Repeated Metadata ItemS oo e 365

B.2. Providing Manual HINtSiiiiiiiiii et 365
V2= 110 1= 11 o TP 365

ValUE PrOVIAEIS . .cenieiii e et e e e e ees 366

ATy e 366

Class REEIENCEiiiiiiiie e 367

HaANAIE AS e 367

LOgger NAME ..o 368

Spring Bean REfEIrENCEcocuuiiiii i 369

Spring Profile NaME ... 370

B.3. Generating Your Own Metadata by Using the Annotation Processor 370

N[(Yo Il o] o= 1= PN 371

Adding Additional Metadatac.uuiieiiiiiiieii e 372

C. AUtO-CONfIQUIALION CIASSES ... eivtieieiii et e e e eeees 373
C.1. From the “spring-boot-autoconfigure” moduleccoeeviiiiiiiiiiii e, 373

C.2. From the “spring-boot-actuator-autoconfigure” modulecccooeiiiiiiiiiiinne, 377

D. Test auto-configuration anNOLALIONSuuiiiiiiiiiii e 380
E. The Executable Jar FOIMALuuiiiiiiiiiici e e 383
0 I N [T (T A £ PP 383

The Executable Jar File StrUCIUIEc.uiiiiiiii e 383

The Executable War File StrUCIUIeoiiiiiiiiiiiiiiie e 383

E.2. Spring Boot's “JArFile” CIaSsSoociiiiiiiiiiii e 384
Compatibility with the Standard Java “JarFile”ccccooiiiiiiiiiiii e 384

E.3. Launching Executable Jarscoooiiiiiii i 384
Launcher Manifest ... e 385

EXploded ArChIVEScooiiii e 385

E.4. Properti esLauncher FEAUIESooiiuii i e 385

E.5. Executable Jar ReSHCHONSiiiiiiiie e 387

E.6. Alternative Single Jar SOIULIONSooieiiiiiiiii e e 387

L B LT oT=T oo [T ooy VY =T £ T L P 388

2.1.0.BUILD-SNAPSHOT Spring Boot Xiv

Part |. Spring Boot Documentation

This section provides a brief overview of Spring Boot reference documentation. It serves as a map for
the rest of the document.

Spring Boot Reference Guide

1. About the Documentation

The Spring Boot reference guide is available as

* HTML

o
U

=

m

PUB

The latest copy is available at docs.spring.io/spring-boot/docs/current/reference.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

2.1.0.BUILD-SNAPSHOT Spring Boot 2

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/reference/html
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/reference/pdf/spring-boot-reference.pdf
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/reference/epub/spring-boot-reference.epub
https://docs.spring.io/spring-boot/docs/current/reference

Spring Boot Reference Guide

2. Getting Help

If you have trouble with Spring Boot, we would like to help.

e Try the How-to documents. They provide solutions to the most common questions.

Learn the Spring basics. Spring Boot builds on many other Spring projects. Check the spring.io web-
site for a wealth of reference documentation. If you are starting out with Spring, try one of the guides.

» Ask a question. We monitor stackoverflow.com for questions tagged with spri ng- boot .

Report bugs with Spring Boot at github.com/spring-projects/spring-boot/issues.

Note

All of Spring Boot is open source, including the documentation. If you find problems with the docs
or if you want to improve them, please get involved.

2.1.0.BUILD-SNAPSHOT Spring Boot 3

https://spring.io
https://spring.io/guides
https://stackoverflow.com
https://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/tree/master

Spring Boot Reference Guide

3. First Steps

If you are getting started with Spring Boot or 'Spring' in general, start with the following topics:

» From scratch: Overview | Requirements | Installation

e Tutorial: Part1 | Part 2

* Running your example: Part 1 | Part 2

2.1.0.BUILD-SNAPSHOT Spring Boot

Spring Boot Reference Guide

4. Working with Spring Boot

Ready to actually start using Spring Boot? We have you covered:

» Build systems: Maven | Gradle | Ant | Starters

» Best practices: Code Structure | @Configuration | @EnableAutoConfiguration | Beans and
Dependency Injection

* Running your code IDE | Packaged | Maven | Gradle

» Packaging your app: Production jars

» Spring Boot CLI: Using the CLI

2.1.0.BUILD-SNAPSHOT Spring Boot 5

Spring Boot Reference Guide

5. Learning about Spring Boot Features

Need more details about Spring Boot's core features? The following content is for you:

Core Features: SpringApplication | External Configuration | Profiles | Logging

Web Applications: MVC | Embedded Containers

Working with data: SQL | NO-SQL

Messaging: Overview | IMS

Testing: Overview | Boot Applications | Utils

Extending: Auto-configuration | @Conditions

2.1.0.BUILD-SNAPSHOT Spring Boot

Spring Boot Reference Guide

6. Moving to Production

When you are ready to push your Spring Boot application to production, we have some tricks that you
might like:

* Management endpoints: Overview | Customization

» Connection options: HTTP | JMX

* Monitoring: Metrics | Auditing | Tracing | Process

2.1.0.BUILD-SNAPSHOT Spring Boot 7

Spring Boot Reference Guide

7. Advanced Topics

Finally, we have a few topics for more advanced users:

» Spring Boot Applications Deployment: Cloud Deployment | OS Service

» Build tool plugins: Maven | Gradle

» Appendix: Application Properties | Auto-configuration classes | Executable Jars

2.1.0.BUILD-SNAPSHOT Spring Boot

Part Il. Getting Started

If you are getting started with Spring Boot, or “Spring” in general, start by reading this section. It answers
the basic “what?”, “how?” and “why?” questions. It includes an introduction to Spring Boot, along with
installation instructions. We then walk you through building your first Spring Boot application, discussing
some core principles as we go.

Spring Boot Reference Guide

8. Introducing Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring-based Applications that you
can run. We take an opinionated view of the Spring platform and third-party libraries, so that you can
get started with minimum fuss. Most Spring Boot applications need very little Spring configuration.

You can use Spring Boot to create Java applications that can be started by using j ava -j ar or more
traditional war deployments. We also provide a command line tool that runs “spring scripts”.

Our primary goals are:
» Provide a radically faster and widely accessible getting-started experience for all Spring development.

» Be opinionated out of the box but get out of the way quickly as requirements start to diverge from
the defaults.

» Provide a range of non-functional features that are common to large classes of projects (such as
embedded servers, security, metrics, health checks, and externalized configuration).

» Absolutely no code generation and no requirement for XML configuration.

2.1.0.BUILD-SNAPSHOT Spring Boot 10

Spring Boot Reference Guide

9. System Requirements

Spring Boot 2.1.0.BUILD-SNAPSHOT requires Java 8 or 9 and Spring Framework 5.1.0.RELEASE or
above.

Explicit build support is provided for the following build tools:

Build Tool Version
Maven 3.3+
Gradle 4.4+

9.1 Servlet Containers

Spring Boot supports the following embedded servlet containers:

Name Servlet Version
Tomcat 9.0 4.0
Jetty 9.4 3.1
Undertow 2.0 4.0

You can also deploy Spring Boot applications to any Servlet 3.1+ compatible container.

2.1.0.BUILD-SNAPSHOT Spring Boot 11

https://www.java.com
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/

Spring Boot Reference Guide

10. Installing Spring Boot

Spring Boot can be used with “classic” Java development tools or installed as a command line tool.
Either way, you need Java SDK v1.8 or higher. Before you begin, you should check your current Java
installation by using the following command:

$ java -version

If you are new to Java development or if you want to experiment with Spring Boot, you might want
to try the Spring Boot CLI (Command Line Interface) first. Otherwise, read on for “classic” installation
instructions.

10.1 Installation Instructions for the Java Developer

You can use Spring Boot in the same way as any standard Java library. To do so, include the
appropriate spri ng- boot - *. j ar files on your classpath. Spring Boot does not require any special
tools integration, so you can use any IDE or text editor. Also, there is nothing special about a Spring Boot
application, so you can run and debug a Spring Boot application as you would any other Java program.

Although you could copy Spring Boot jars, we generally recommend that you use a build tool that
supports dependency management (such as Maven or Gradle).

Maven Installation

Spring Boot is compatible with Apache Maven 3.3 or above. If you do not already have Maven installed,
you can follow the instructions at maven.apache.org.

Tip

On many operating systems, Maven can be installed with a package manager. If you use OSX
Homebrew, try brew install maven. Ubuntu users can run sudo apt-get install
maven. Windows users with Chocolatey can run choco install naven from an elevated
(administrator) prompt.

Spring Boot dependencies use the or g. spri ngf r amewor k. boot groupl d. Typically, your Maven
POM file inherits from the spri ng- boot - st art er - par ent project and declares dependencies to
one or more “Starters”. Spring Boot also provides an optional Maven plugin to create executable jars.

The following listing shows a typical pom xmni file:

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // www. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>myproject</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>

<l-- Inherit defaults from Spring Boot -->

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<version>2.1.0. BUl LD- SNAPSHOT</ ver si on>

</ par ent >

<l-- Add typical dependencies for a web application -->

2.1.0.BUILD-SNAPSHOT Spring Boot 12

https://www.java.com
https://maven.apache.org
https://chocolatey.org/

Spring Boot Reference Guide

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

<l -- Package as an executable jar -->
<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-mven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

<!-- Add Spring repositories -->
<I-- (you don't need this if you are using a .RELEASE version) -->
<reposi tories>
<repository>
<i d>spring- snapshot s</i d>
<url >https://repo.spring.iolsnapshot </ url >
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
<reposi tory>
<i d>spring-mlestones</id>
<url >https://repo.spring.io/mlestone</url>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spri ng- snapshot s</i d>
<url >https://repo.spring.iolsnapshot </ url >
</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-mlestones</id>
<url>https://repo.spring.io/mlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>
</ proj ect >

Tip
The spri ng-boot -starter-parent is a great way to use Spring Boot, but it might not be
suitable all of the time. Sometimes you may need to inherit from a different parent POM, or you

might not like our default settings. In those cases, see the section called “Using Spring Boot
without the Parent POM” for an alternative solution that uses an i nport scope.

Gradle Installation

Spring Boot is compatible with Gradle 4.4 and later. If you do not already have Gradle installed, you
can follow the instructions at gradle.org.

Spring Boot dependencies can be declared by using the or g. spri ngf ramewor k. boot gr oup.
Typically, your project declares dependencies to one or more “Starters”. Spring Boot provides a useful
Gradle plugin that can be used to simplify dependency declarations and to create executable jars.

Gradle Wrapper

The Gradle Wrapper provides a nice way of “obtaining” Gradle when you need to build a project.
It is a small script and library that you commit alongside your code to bootstrap the build process.
See docs.gradle.org/4.2.1/userguide/gradle_wrapper.html for details.

2.1.0.BUILD-SNAPSHOT Spring Boot 13

https://gradle.org
https://docs.gradle.org/4.2.1/userguide/gradle_wrapper.html

Spring Boot Reference Guide

The following example shows a typical bui | d. gr adl e file:

buil dscript {
repositories {
jcenter()
maven { url 'https://repo.spring.iol/snapshot’ }
maven { url 'https://repo.spring.io/mlestone }
}
dependenci es {
cl asspath 'org. springfranmework. boot: spring-boot - gradl e- pl ugi n: 2. 1. 0. BUl LD- SNAPSHOT'
}
}

apply plugin: '"java'
apply plugin: 'org.springframework. boot'

apply plugin: 'io.spring.dependency-managenent'’
jar {

baseNane = 'nyproject’

version = '0.0. 1- SNAPSHOT'

}

repositories {
jcenter()
maven { url "https://repo.spring.iolsnapshot" }
maven { url "https://repo.spring.io/ mlestone" }

}

dependenci es {
conpi | e("org. springfranmework. boot : spri ng-boot -starter-web")
test Conpi | e("org. spri ngframewor k. boot : spri ng-boot-starter-test")

}

10.2 Installing the Spring Boot CLI

The Spring Boot CLI (Command Line Interface) is a command line tool that you can use to quickly
prototype with Spring. It lets you run Groovy scripts, which means that you have a familiar Java-like
syntax without so much boilerplate code.

You do not need to use the CLI to work with Spring Boot, but it is definitely the quickest way to get a
Spring application off the ground.

Manual Installation

You can download the Spring CLI distribution from the Spring software repository:

* spring-boot-cli-2.1.0.BUILD-SNAPSHOT-bin.zip

e spring-boot-cli-2.1.0.BUILD-SNAPSHOT-bin.tar.gz

Cutting edge snapshot distributions are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary, there is
aspri ng script (spri ng. bat for Windows) in a bi n/ directory in the . zi p file. Alternatively, you can
usej ava -j ar withthe.j ar file (the script helps you to be sure that the classpath is set correctly).

Installation with SDKMAN!

SDKMAN! (The Software Development Kit Manager) can be used for managing multiple versions of
various binary SDKs, including Groovy and the Spring Boot CLI. Get SDKMAN! from sdkman.io and
install Spring Boot by using the following commands:

2.1.0.BUILD-SNAPSHOT Spring Boot 14

http://groovy-lang.org/
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.1.0.BUILD-SNAPSHOT/spring-boot-cli-2.1.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.1.0.BUILD-SNAPSHOT/spring-boot-cli-2.1.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
https://raw.github.com/spring-projects/spring-boot/master/spring-boot-project/spring-boot-cli/src/main/content/INSTALL.txt
http://sdkman.io

Spring Boot Reference Guide

$ sdk install springboot
$ spring --version
Spring Boot v2.1.0.BU LD SNAPSHOT

If you develop features for the CLI and want easy access to the version you built, use the following
commands:

$ sdk install springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-cli-2.1.0.BU LD
SNAPSHOT- bi n/ spri ng- 2. 1. 0. BUl LD- SNAPSHOT/

$ sdk default springboot dev

$ spring --version

Spring CLI v2.1.0.BU LD SNAPSHOT

The preceding instructions install a local instance of spri ng called the dev instance. It points at your
target build location, so every time you rebuild Spring Boot, spri ng is up-to-date.

You can see it by running the following command:

$ sdk |'s springboot

Avai | abl e Springboot Versions

> + dev
* 2.1.0. BU LD SNAPSHOT

a4

- local version
* - installed
> - currently in use

OSX Homebrew Installation

If you are on a Mac and use Homebrew, you can install the Spring Boot CLI by using the following
commands:

$ brew tap pivotal /tap
$ brew install springboot

Homebrew installs spri ng to/ usr/ | ocal / bi n.

Note

If you do not see the formula, your installation of brew might be out-of-date. In that case, run br ew
updat e and try again.

MacPorts Installation

If you are on a Mac and use MacPorts, you can install the Spring Boot CLI by using the following
command:

$ sudo port install spring-boot-cli

Command-line Completion

The Spring Boot CLI includes scripts that provide command completion for the BASH and zsh shells. You
can sour ce the script (also named spr i ng) in any shell or put it in your personal or system-wide bash

2.1.0.BUILD-SNAPSHOT Spring Boot 15

http://brew.sh/
http://www.macports.org/
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/Z_shell

Spring Boot Reference Guide

completion initialization. On a Debian system, the system-wide scripts are in / shel | - conpl et i on/
bash and all scripts in that directory are executed when a new shell starts. For example, to run the script
manually if you have installed by using SDKMAN!, use the following commands:

$. ~/.sdkman/ candi dat es/ spri ngboot/current/shel | - conpl eti on/ bash/ spring
$ spring <H T TAB HERE>
grab help jar run test version

Note

If you install the Spring Boot CLI by using Homebrew or MacPorts, the command-line completion
scripts are automatically registered with your shell.

Windows Scoop Installation

If you are on a Windows and use Scoop, you can install the Spring Boot CLI by using the following
commands:

> scoop bucket add extras
> scoop install springboot

Scoop installs spri ng to ~/ scoop/ apps/ spri ngboot/ current/ bin.

Note

If you do not see the app manifest, your installation of scoop might be out-of-date. In that case,
run scoop updat e and try again.

Quick-start Spring CLI Example

You can use the following web application to test your installation. To start, create a file called
app. gr oovy, as follows:

@Rest Control | er
class ThisWI | Actual |l yRun {

@Request Mappi ng("/")
String horme() {
"Hello World!l"

}

Then run it from a shell, as follows:

$ spring run app.groovy

Note

The first run of your application is slow, as dependencies are downloaded. Subsequent runs are
much quicker.

Open | ocal host : 8080 in your favorite web browser. You should see the following output:

Hel I o Worl d!

2.1.0.BUILD-SNAPSHOT Spring Boot 16

http://scoop.sh/
http://localhost:8080

Spring Boot Reference Guide

10.3 Upgrading from an Earlier Version of Spring Boot

If you are upgrading from an earlier release of Spring Boot, check the “migration guide” on the project
wiki that provides detailed upgrade instructions. Check also the “release notes” for a list of “new and
noteworthy” features for each release.

When upgrading to a new feature release, some properties may have been renamed or removed. Spring
Boot provides a way to analyze your application’s environment and print diagnostics at startup, but also
temporarily migrate properties at runtime for you. To enable that feature, add the following dependency
to your project:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-properties-mgrator</artifact|d>

<scope>runti nme</scope>
</ dependency>

Warning

Properties that are added late to the environment, such as when using @r oper t ySour ce, will
not be taken into account.

Note

Once you're done with the migration, please make sure to remove this module from your project’s
dependencies.

To upgrade an existing CLI installation, use the appropriate package manager command (for example,
br ew upgr ade) or, if you manually installed the CLI, follow the standard instructions, remembering to
update your PATH environment variable to remove any older references.

2.1.0.BUILD-SNAPSHOT Spring Boot 17

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki

Spring Boot Reference Guide

11. Developing Your First Spring Boot Application

This section describes how to develop a simple “Hello World!” web application that highlights some of
Spring Boot's key features. We use Maven to build this project, since most IDEs support it.

Tip

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you need
to solve a specific problem, check there first.

You can shortcut the steps below by going to start.spring.io and choosing the "Web" starter from
the dependencies searcher. Doing so generates a new project structure so that you can start
coding right away. Check the Spring Initializr documentation for more details.

Before we begin, open a terminal and run the following commands to ensure that you have valid versions
of Java and Maven installed:

$ java -version

java version "1.8.0_102"

Java(TM SE Runtine Environnent (build 1.8.0_102-b14)

Java Hot Spot (TM) 64-Bit Server VM (build 25.102-b14, nixed node)

$ m/n -v

Apache Maven 3.5.4 (1ledded0938998edf 8bf 061f 1ceb3cf deccf443fe; 2018-06-17T14: 33: 14- 04: 00)
Maven hone: /usr/local/Cellar/ maven/3.3.9/1ibexec

Java version: 1.8.0_102, vendor: Oracle Corporation

Note

This sample needs to be created in its own folder. Subsequent instructions assume that you have
created a suitable folder and that it is your current directory.

11.1 Creating the POM

We need to start by creating a Maven pom xm file. The pom xni is the recipe that is used to build
your project. Open your favorite text editor and add the following:

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http: //wwmv w3. or g/ 2001/ XM_Schen®- i nst ance"
xsi : schemalLocation="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>nyproject</artifactld>
<versi on>0. 0. 1- SNAPSHOT</ ver si on>

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<versi on>2. 1. 0. BUl LD- SNAPSHOT</ ver si on>

</ par ent >
<l-- Additional lines to be added here... -->
<!-- (you don't need this if you are using a .RELEASE version) -->

<reposi tories>
<repository>
<i d>spri ng- snapshot s</i d>
<url >https://repo. spring.iolsnapshot </ url >

2.1.0.BUILD-SNAPSHOT Spring Boot 18

https://spring.io
https://spring.io/guides
https://start.spring.io
https://docs.spring.io/initializr/docs/current/reference/htmlsingle/#user-guide

Spring Boot Reference Guide

<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
<repository>
<i d>spring-nmnilestones</id>
<url >https://repo.spring.io/mlestone</url>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spring- snapshot s</ i d>
<url >https://repo.spring.iolsnapshot </ url >
</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-mlestones</id>
<url>https://repo.spring.io/mlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>
</ proj ect >

The preceding listing should give you a working build. You can test it by running nvn package (for
now, you can ignore the “jar will be empty - no content was marked for inclusion!” warning).

Note

At this point, you could import the project into an IDE (most modern Java IDEs include built-in
support for Maven). For simplicity, we continue to use a plain text editor for this example.

11.2 Adding Classpath Dependencies

Spring Boot provides a number of “Starters” that let you add jars to your classpath. Our sample
application has already used spri ng- boot - st art er - par ent in the par ent section of the POM.
The spring-boot -starter-parent is a special starter that provides useful Maven defaults. It
also provides a dependency- nanagenent section so that you can omit ver si on tags for “blessed”
dependencies.

Other “Starters” provide dependencies that you are likely to need when developing a specific type
of application. Since we are developing a web application, we add a spri ng- boot - starter-web
dependency. Before that, we can look at what we currently have by running the following command:

$ nvn dependency:tree

[INFO com exanpl e: nyproj ect:jar:0.0.1- SNAPSHOT

The nvn dependency: tree command prints a tree representation of your project dependencies.
You can see that spri ng- boot - st art er - par ent provides no dependencies by itself. To add the
necessary dependencies, edit your pom xm and add the spri ng- boot - st art er - web dependency
immediately below the par ent section:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

If you run nvn dependency:tree again, you see that there are now a number of additional
dependencies, including the Tomcat web server and Spring Boot itself.

2.1.0.BUILD-SNAPSHOT Spring Boot 19

Spring Boot Reference Guide

11.3 Writing the Code

To finish our application, we need to create a single Java file. By default, Maven compiles sources from
src/ mai n/j ava, so you need to create that folder structure and then add a file named sr ¢/ mai n/
j aval Exanpl e. j ava to contain the following code:

i nport org.springfranework. boot . *;
i nport org.springfranework. boot. aut oconfi gure. *;
i nport org.springfranework. web. bi nd. annot ati on. *;

@Rest Control | er
@nabl eAut oConfi guration
public class Exanple {

@Request Mappi ng("/")
String home() {

return "Hello World!'";
}

public static void main(String[] args) throws Exception {
SpringApplication. run(Exanpl e. cl ass, args);
}

}

Although there is not much code here, quite a lot is going on. We step through the important parts in
the next few sections.

The @RestController and @RequestMapping Annotations

The first annotation on our Exanpl e class is @Rest Control | er. This is known as a stereotype
annotation. It provides hints for people reading the code and for Spring that the class plays a specific
role. In this case, our class is a web @ont rol | er, so Spring considers it when handling incoming
web requests.

The @Request Mappi ng annotation provides “routing” information. It tells Spring that any HTTP request
with the / path should be mapped to the hone method. The @Rest Cont r ol | er annotation tells Spring
to render the resulting string directly back to the caller.

Tip

The @Rest Control |l er and @Request Mappi ng annotations are Spring MVC annotations.
(They are not specific to Spring Boot.) See the MVC section in the Spring Reference
Documentation for more details.

The @EnableAutoConfiguration Annotation

The second class-level annotation is @nabl eAut oConf i gur at i on. This annotation tells Spring Boot
to “guess” how you want to configure Spring, based on the jar dependencies that you have added. Since
spring-boot - st art er-web added Tomcat and Spring MVC, the auto-configuration assumes that
you are developing a web application and sets up Spring accordingly.

Starters and Auto-configuration

Auto-configuration is designed to work well with “Starters”, but the two concepts are not directly
tied. You are free to pick and choose jar dependencies outside of the starters. Spring Boot still
does its best to auto-configure your application.

2.1.0.BUILD-SNAPSHOT Spring Boot 20

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#mvc

Spring Boot Reference Guide

The “main” Method

The final part of our application is the mai n method. This is just a standard method that follows
the Java convention for an application entry point. Our main method delegates to Spring Boot’'s
Spri ngAppl i cati on class by callingr un. Spri ngAppl i cat i on bootstraps our application, starting
Spring, which, in turn, starts the auto-configured Tomcat web server. We need to pass Exanpl e. cl ass
as an argument to the r un method to tell Spri ngAppl i cat i on which is the primary Spring component.
The ar gs array is also passed through to expose any command-line arguments.

11.4 Running the Example

At this point, your application should work. Since you used the spr i ng- boot - st art er - par ent POM,
you have a useful r un goal that you can use to start the application. Type nvn spri ng- boot: run
from the root project directory to start the application. You should see output similar to the following:

$ nvn spring-boot:run

[[W U W
- r)
|
=11
:: Spring Boot :: (v2.1.0.BU LD SNAPSHOT)

NN () VA
I
I
(|

. (1 og output here)

........ Started Exanple in 2.222 seconds (JVMrunning for 6.514)

If you open a web browser to | ocal host : 8080, you should see the following output:

‘Hello Wor | d!

To gracefully exit the application, pressctrl -c.

11.5 Creating an Executable Jar

We finish our example by creating a completely self-contained executable jar file that we could run in
production. Executable jars (sometimes called “fat jars”) are archives containing your compiled classes
along with all of the jar dependencies that your code needs to run.

Executable jars and Java

Java does not provide a standard way to load nested jar files (jar files that are themselves contained
within a jar). This can be problematic if you are looking to distribute a self-contained application.

To solve this problem, many developers use “uber” jars. An uber jar packages all the classes from
all the application’s dependencies into a single archive. The problem with this approach is that it
becomes hard to see which libraries are in your application. It can also be problematic if the same
filename is used (but with different content) in multiple jars.

Spring Boot takes a different approach and lets you actually nest jars directly.

To create an executable jar, we need to add the spri ng- boot - maven- pl ugi n to our pom xm . To
do so, insert the following lines just below the dependenci es section:

2.1.0.BUILD-SNAPSHOT Spring Boot 21

http://localhost:8080

Spring Boot Reference Guide

<bui | d>

<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactld>
</ pl ugi n>

</ pl ugi ns>

</ bui | d>

Note

The spri ng- boot - start er-parent POM includes <execut i ons> configuration to bind the
r epackage goal. If you do not use the parent POM, you need to declare this configuration
yourself. See the plugin documentation for details.

Save your pom xnl and run nvn package from the command line, as follows:

$ nvn package

[INFQ Scanning for projects...

[I NFO

[INRG] ==ccssccssccsscosscossconscanscanscanscansconscanscansconoconoconoca09e0s

[INFQ Building nyproject 0.0.1- SNAPSHOT

I 3 I

[INFO

[INFO --- maven-jar-plugin:2.4:jar (default-jar) @nyproject ---

[INFOQ Building jar: /Users/devel oper/exanpl e/ spring-boot - exanpl e/t ar get/ nypr oj ect - 0. 0. 1- SNAPSHOT. j ar
[INFO

[INFQ --- spring-boot-maven-plugin: 2. 1. 0. BU LD SNAPSHOT: r epackage (default) @ nyproject ---
[INFQ - mmmmm e e e e e e m e e e e e e e e e e e

[INFO BU LD SUCCESS

Y = R T

If you look in the t ar get directory, you should see mypr oj ect-0. 0. 1- SNAPSHOT. j ar . The file
should be around 10 MB in size. If you want to peek inside, you can use j ar t vf, as follows:

$ jar tvf target/nyproject-0.0.1- SNAPSHOT. j ar

You should also see a much smaller file named nmypr oj ect - 0. 0. 1- SNAPSHOT. j ar. ori gi nal in
the t ar get directory. This is the original jar file that Maven created before it was repackaged by Spring
Boot.

To run that application, use the j ava -j ar command, as follows:

$ java -jar target/myproject-0.0.1- SNAPSHOT. j ar

M (O VL

CON_ N vy vy
W e ro)y)))
S S [) O W B A O
| _l | __/1=_1_1_1

Spring Boot :: (v2.1.0.BU LD SNAPSHOT)

....... . . . (log output here)

........ Started Exanple in 2.536 seconds (JVMrunning for 2.864)

As before, to exit the application, pressctrl -c.

2.1.0.BUILD-SNAPSHOT Spring Boot 22

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/maven-plugin/usage.html

Spring Boot Reference Guide

12. What to Read Next

Hopefully, this section provided some of the Spring Boot basics and got you on your way to writing your
own applications. If you are a task-oriented type of developer, you might want to jump over to spring.io
and check out some of the getting started guides that solve specific “How do | do that with Spring?”
problems. We also have Spring Boot-specific “How-to” reference documentation.

The Spring Boot repository also has a bunch of samples you can run. The samples are independent of
the rest of the code (that is, you do not need to build the rest to run or use the samples).

Otherwise, the next logical step is to read Part lll, “Using Spring Boot”. If you are really impatient, you
could also jump ahead and read about Spring Boot features.

2.1.0.BUILD-SNAPSHOT Spring Boot 23

https://spring.io
https://spring.io/guides/
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples

Part lll. Using Spring Boot

This section goes into more detail about how you should use Spring Boot. It covers topics such as build
systems, auto-configuration, and how to run your applications. We also cover some Spring Boot best
practices. Although there is nothing particularly special about Spring Boot (it is just another library that

you can consume), there are a few recommendations that, when followed, make your development
process a little easier.

If you are starting out with Spring Boot, you should probably read the Getting Started guide before diving
into this section.

Spring Boot Reference Guide

13. Build Systems

Itis strongly recommended that you choose a build system that supports dependency management and
that can consume artifacts published to the “Maven Central” repository. We would recommend that you
choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems (Ant, for
example), but they are not particularly well supported.

13.1 Dependency Management

Each release of Spring Boot provides a curated list of dependencies that it supports. In practice, you
do not need to provide a version for any of these dependencies in your build configuration, as Spring
Boot manages that for you. When you upgrade Spring Boot itself, these dependencies are upgraded
as well in a consistent way.

Note

You can still specify a version and override Spring Boot’s recommendations if you need to do so.

The curated list contains all the spring modules that you can use with Spring Boot as well as a
refined list of third party libraries. The list is available as a standard Bills of Materials (spri ng- boot -
dependenci es) that can be used with both Maven and Gradle.

Warning

Each release of Spring Boot is associated with a base version of the Spring Framework. We
highly recommend that you not specify its version.

13.2 Maven

Maven users can inherit from the spri ng- boot - st art er - par ent project to obtain sensible defaults.
The parent project provides the following features:

» Java 1.8 as the default compiler level.
» UTF-8 source encoding.

» A Dependency Management section, inherited from the spring-boot-dependencies pom, that
manages the versions of common dependencies. This dependency management lets you omit
<version> tags for those dependencies when used in your own pom.

* An execution of the r epackage goal with a r epackage execution id.

» Sensible resource filtering.

» Sensible plugin configuration (exec plugin, Git commit ID, and shade).

» Sensible resource filtering for application. properties and application.ym including
profile-specific files (for example, appl i cati on-dev. properties andapplication-dev.ynl)

Note that, since the appl i cati on. properti es and application.ymnl files accept Spring style
placeholders (${ ..}), the Maven filtering is changed to use @ . @placeholders. (You can override that
by setting a Maven property called r esour ce. del i ni ter.)

2.1.0.BUILD-SNAPSHOT Spring Boot 25

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/maven-plugin/repackage-mojo.html
https://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://www.mojohaus.org/exec-maven-plugin/
https://github.com/ktoso/maven-git-commit-id-plugin
https://maven.apache.org/plugins/maven-shade-plugin/

Spring Boot Reference Guide

Inheriting the Starter Parent

To configure your project to inherit from the spri ng- boot - st art er - par ent, set the parent as
follows:

<l-- Inherit defaults from Spring Boot -->

<parent >

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<version>2.1.0. BUl LD- SNAPSHOT</ ver si on>

</ par ent >

Note

You should need to specify only the Spring Boot version number on this dependency. If you import
additional starters, you can safely omit the version number.

With that setup, you can also override individual dependencies by overriding a property in your own
project. For instance, to upgrade to another Spring Data release train, you would add the following to
your pom xm :

<properties>
<spring-dat a-rel easetrain. versi on>Fow er - SR2</ spri ng- dat a- r el easetrai n. ver si on>
</ properties>

Tip

Check the spri ng- boot - dependenci es pom for a list of supported properties.

Using Spring Boot without the Parent POM

Not everyone likes inheriting from the spri ng- boot - st art er - parent POM. You may have your
own corporate standard parent that you need to use or you may prefer to explicitly declare all your
Maven configuration.

If you do not want to use the spri ng- boot - st art er - par ent, you can still keep the benefit of the
dependency management (but not the plugin management) by using a scope=i nport dependency,
as follows:

<dependencyManagenent >
<dependenci es>
<dependency>
<l-- Inport dependency managenent from Spring Boot -->
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-dependenci es</artifactld>
<version>2.1.0. BUl LD SNAPSHOT</ ver si on>
<t ype>ponx/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

The preceding sample setup does not let you override individual dependencies by using a property, as
explained above. To achieve the same result, you need to add an entry in the dependencyManagenent
of your project before the spri ng- boot - dependenci es entry. For instance, to upgrade to another
Spring Data release train, you could add the following element to your pom xm :

<dependencyManagenent >

2.1.0.BUILD-SNAPSHOT Spring Boot 26

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-dependencies/pom.xml

Spring Boot Reference Guide

<dependenci es>
<l-- Override Spring Data release train provided by Spring Boot -->
<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-rel easetrain</artifactld>
<versi on>Fow er- SR2</ ver si on>
<t ype>ponx/type>
<scope>i nport </ scope>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-dependenci es</artifactld>
<versi on>2. 1. 0. BU LD- SNAPSHOT</ ver si on>
<t ype>ponx/ t ype>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

Note

In the preceding example, we specify a BOM, but any dependency type can be overridden in the
same way.

Using the Spring Boot Maven Plugin

Spring Boot includes a Maven plugin that can package the project as an executable jar. Add the plugin
to your <pl ugi ns> section if you want to use it, as shown in the following example:

<bui | d>

<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
</ pl ugi n>

</ pl ugi ns>

</ bui | d>

Note

If you use the Spring Boot starter parent pom, you need to add only the plugin. There is no need
to configure it unless you want to change the settings defined in the parent.

13.3 Gradle

To learn about using Spring Boot with Gradle, please refer to the documentation for Spring Boot's Gradle
plugin:

» Reference (HTML and PDF)

. API

13.4 Ant

Itis possible to build a Spring Boot project using Apache Ant+lvy. The spri ng- boot - ant | i b “AntLib”
module is also available to help Ant create executable jars.

To declare dependencies, a typical i vy. xm file looks something like the following example:

2.1.0.BUILD-SNAPSHOT Spring Boot 27

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/gradle-plugin/reference/html
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/gradle-plugin/reference/pdf/spring-boot-gradle-plugin-reference.pdf
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/gradle-plugin/api

Spring Boot Reference Guide

<i vy-nodul e version="2.0">
<info organi sation="org. springframework. boot" nodul e="spring-boot -sanpl e-ant" />
<configurations>
<conf nanme="conpile" description="everything needed to conpile this nodule" />
<conf name="runtinme" extends="conpile" description="everything needed to run this nodule" />
</ configurations>
<dependenci es>
<dependency org="org. springframework. boot" nanme="spring-boot-starter"
rev="${spring-boot.version}" conf="conpile" />
</ dependenci es>
</ivy-nodul e>

A typical bui | d. xm looks like the following example:

<pr oj ect
xm ns:ivy="antlib:org.apache.ivy.ant"
xm ns: spring-boot="antlib: org. springfranework. boot . ant"
name="nyapp" defaul t="build">

<property name="spring-boot. version" val ue="2.1.0. BU LD SNAPSHOT" />

<target nane="resolve" description="--> retrieve dependencies with ivy">
<ivy:retrieve pattern="lib/[conf]/[artifact]-[type]-[revision].[ext]" />
</target>

<target name="cl asspat hs" depends="resol ve">
<path id="conpile.classpath">
<fileset dir="lib/conpile" includes="*.jar" />
</ pat h>
</target>

<target name="init" depends="cl asspat hs">
<nkdir dir="build/classes" />
</target>

<target nanme="conpile" depends="init" description="conpile">
<javac srcdir="src/main/java" destdir="buil d/classes" classpathref="conpile.classpath" />
</target>

<target name="build" depends="conpile">
<spring-boot:exejar destfile="build/ myapp.jar" classes="buil d/cl asses">
<spring-boot:|ib>
<fileset dir="lib/runtime" />
</ spring-boot:|ib>
</ spring-boot : exej ar >
</target>
</ proj ect >

Tip

If you do not want to use the spri ng- boot - ant | i b module, see the Section 90.9, “Build an
Executable Archive from Ant without Using spri ng- boot - ant | i b” “How-to” .

13.5 Starters

Starters are a set of convenient dependency descriptors that you can include in your application. You
get a one-stop shop for all the Spring and related technologies that you need without having to hunt
through sample code and copy-paste loads of dependency descriptors. For example, if you want to get
started using Spring and JPA for database access, include the spri ng- boot -starter-data-j pa
dependency in your project.

The starters contain a lot of the dependencies that you need to get a project up and running quickly and
with a consistent, supported set of managed transitive dependencies.

2.1.0.BUILD-SNAPSHOT Spring Boot 28

Spring Boot Reference Guide

What’s in a name

All official starters follow a similar naming pattern; spri ng- boot -starter-*, where * is a
particular type of application. This haming structure is intended to help when you need to find a
starter. The Maven integration in many IDEs lets you search dependencies by name. For example,
with the appropriate Eclipse or STS plugin installed, you can press ct r | - space in the POM editor
and type “spring-boot-starter” for a complete list.

As explained in the “Creating Your Own Starter” section, third party starters should not start
with spri ng-boot, as it is reserved for official Spring Boot artifacts. Rather, a third-party
starter typically starts with the name of the project. For example, a third-party starter project

called t hi rdpart ypr oj ect would typically be named t hi r dpart ypr oj ect - spri ng- boot -

starter.
The following application starters are provided by Spring Boot under the
org. spri ngfranmewor k. boot group:
Table 13.1. Spring Boot application starters
Name Description Pom
spring-boot-starter Core starter, including auto- Pom
configuration support, logging
and YAML
spring-boot-starter- Starter for IMS messaging Pom
activeng using Apache ActiveMQ
spring-boot-starter- Starter for using Spring AMQP Pom
anmgp and Rabbit MQ
spring-boot-starter-aop | Starter for aspect-oriented Pom
programming with Spring AOP
and AspectJ
spring-boot-starter- Starter for IMS messaging Pom
artems using Apache Artemis
spring-boot-starter- Starter for using Spring Batch Pom
bat ch
spring-boot-starter- Starter for using Spring Pom
cache Framework’s caching support
spring-boot-starter- Starter for using Spring Cloud Pom
cl oud- connectors Connectors which simplifies
connecting to services in cloud
platforms like Cloud Foundry
and Heroku
spring-boot-starter- Starter for using Cassandra Pom
dat a- cassandr a distributed database and Spring
Data Cassandra
2.1.0.BUILD-SNAPSHOT Spring Boot 29

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-activemq/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-amqp/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-aop/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-artemis/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-batch/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-cache/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-cloud-connectors/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-cassandra/pom.xml

Spring Boot Reference Guide

Name Description Pom
spring-boot-starter- Starter for using Cassandra Pom
dat a- cassandr a-reacti ve | distributed database and Spring

Data Cassandra Reactive
spring-boot-starter- Starter for using Couchbase Pom
dat a- couchbase document-oriented database

and Spring Data Couchbase
spring-boot-starter- Starter for using Couchbase Pom
dat a- couchbase-reacti ve | document-oriented database

and Spring Data Couchbase

Reactive
spring-boot-starter- Starter for using Elasticsearch ~ Pom
dat a- el asti csearch search and analytics engine

and Spring Data Elasticsearch
spring-boot-starter- Starter for using Spring Data Pom
dat a- j dbc JDBC
spring-boot-starter- Starter for using Spring Data Pom
dat a-j pa JPA with Hibernate
spring-boot-starter- Starter for using Spring Data Pom
dat a- | dap LDAP
spring-boot-starter- Starter for using MongoDB Pom
dat a- nrongodb document-oriented database

and Spring Data MongoDB
spring-boot-starter- Starter for using MongoDB Pom
dat a- nongodb-reacti ve document-oriented database

and Spring Data MongoDB

Reactive
spring-boot-starter- Starter for using Neo4j graph Pom
dat a- neo4j database and Spring Data

Neo4j
spring-boot-starter- Starter for using Redis key- Pom
data-redis value data store with Spring

Data Redis and the Lettuce

client
spring-boot-starter- Starter for using Redis key- Pom
dat a-redi s-reactive value data store with Spring

Data Redis reactive and the

Lettuce client
spring-boot-starter- Starter for exposing Spring Pom
dat a-r est Data repositories over REST

using Spring Data REST

2.1.0.BUILD-SNAPSHOT Spring Boot

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-cassandra-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-couchbase/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-couchbase-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-elasticsearch/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-jdbc/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-jpa/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-ldap/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-mongodb/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-mongodb-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-neo4j/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-redis/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-redis-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-rest/pom.xml

Spring Boot Reference Guide

Name Description Pom
spring-boot-starter- Starter for using the Apache Pom
dat a- sol r Solr search platform with Spring

Data Solr
spring-boot-starter- Starter for building MVC web Pom
freemar ker applications using FreeMarker

views
spring-boot-starter- Starter for building MVC web Pom
groovy-tenpl at es applications using Groovy

Templates views
spring-boot-starter- Starter for building hypermedia- Pom
hat eoas based RESTful web application

with Spring MVC and Spring

HATEOAS
spring-boot-starter- Starter for using Spring Pom
i ntegration Integration
spring-boot-starter- Starter for using JDBC with the Pom
j dbc HikariCP connection pool
spring-boot-starter- Starter for building RESTful Pom
j ersey web applications using JAX-RS

and Jersey. An alternative to

spring-boot-starter-web
spring-boot-starter- Starter for using jOOQ to Pom
j 0oq access SQL databases. An

alternative to spri ng- boot -

starter-data-jpaor

spring-boot-starter-

j dbc
spring-boot-starter- Starter for reading and writing Pom
json json
spring-boot-starter- Starter for JTA transactions Pom
jta-atom kos using Atomikos
spring-boot-starter- Starter for JTA transactions Pom
jta-bitronix using Bitronix
spring-boot-starter- Starter for using Java Mail Pom
mai | and Spring Framework’s emalil

sending support
spring-boot-starter- Starter for building web Pom
nust ache applications using Mustache

views

2.1.0.BUILD-SNAPSHOT Spring Boot

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-data-solr/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-freemarker/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-groovy-templates/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-hateoas/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-integration/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-jdbc/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-jersey/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-jooq/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-json/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-jta-atomikos/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-jta-bitronix/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-mail/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-mustache/pom.xml

Spring Boot Reference Guide

Name Description Pom
spring-boot-starter- Starter for using Spring Pom
oaut h2-oi dc-cl i ent Security’s OAuth2/OpenID

Connect client features
spring-boot-starter- Starter for using the Quartz Pom
quartz scheduler
spring-boot-starter- Starter for using Spring Security Pom
security
spring-boot-starter- Starter for testing Spring Boot Pom
t est applications with libraries

including JUnit, Hamcrest and

Mockito
spring-boot-starter- Starter for building MVC web Pom
t hynel eaf applications using Thymeleaf

views
spring-boot-starter- Starter for using Java Bean Pom
val i dation Validation with Hibernate

Validator
spring-boot - starter-web | Starter for building web, Pom

including RESTful, applications

using Spring MVC. Uses

Tomcat as the default

embedded container
spring-boot-starter- Starter for using Spring Web Pom
web- servi ces Services
spring-boot-starter- Starter for building WebFlux Pom
webf | ux applications using Spring

Framework’s Reactive Web

support
spring-boot-starter- Starter for building WebSocket Pom
websocket applications using Spring

Framework’s WebSocket

support

In addition to the application starters, the following starters can be used to add production ready features:

Table 13.2. Spring Boot production starters

Name Description Pom
spring-boot-starter- Starter for using Spring Boot's Po
act uat or Actuator which provides

production ready features to
help you monitor and manage
your application

2.1.0.BUILD-SNAPSHOT Spring Boot 32

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-oauth2-oidc-client/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-quartz/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-security/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-test/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-thymeleaf/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-validation/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-web/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-web-services/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-webflux/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-websocket/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-actuator/pom.xml

Spring Boot Reference Guide

Finally, Spring Boot also includes the following starters that can be used if you want to exclude or swap

specific technical facets:

Table 13.3. Spring Boot technical starters

Name Description Pom
spring-boot-starter- Starter for using Jetty as the Pom
jetty embedded servlet container. An

alternative to spri ng- boot -

starter-tontat
spring-boot-starter- Starter for using Log4j2 for Pom
| 0g4j 2 logging. An alternative to

spring-boot-starter-

| oggi ng
spring-boot-starter- Starter for logging using Pom
| oggi ng Logback. Default logging starter
spring-boot-starter- Starter for using Reactor Netty Pom
reactor-netty as the embedded reactive

HTTP server.
spring-boot-starter- Starter for using Tomcat as the Pom
t ontat embedded servlet container.

Default servlet container starter

used by spri ng- boot -

starter-web
spring-boot-starter- Starter for using Undertow Pom

undert ow

Tip

For a list of additional community contributed starters, see the README file in the spri ng- boot -

st art er s module on GitHub.

as the embedded servlet
container. An alternative to
spring-boot-starter-
t ontat

2.1.0.BUILD-SNAPSHOT

Spring Boot

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-jetty/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-log4j2/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-logging/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-reactor-netty/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-tomcat/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/spring-boot-starter-undertow/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/README.adoc

Spring Boot Reference Guide

14. Structuring Your Code

Spring Boot does not require any specific code layout to work. However, there are some best practices
that help.

14.1 Using the “default” Package

When a class does not include a package declaration, it is considered to be in the “default package”.
The use of the “default package” is generally discouraged and should be avoided. It can cause
particular problems for Spring Boot applications that use the @onponent Scan, @ntityScan, or
@Bpr i ngBoot Appl i cat i on annotations, since every class from every jar is read.

Tip

We recommend that you follow Java’s recommended package naming conventions and use a
reversed domain name (for example, com exanpl e. pr oj ect).

14.2 Locating the Main Application Class

We generally recommend that you locate your main application class in a root package above other
classes. The @Bpri ngBoot Appl i cati on annotation is often placed on your main class, and it
implicitly defines a base “search package” for certain items. For example, if you are writing a JPA
application, the package of the @bpri ngBoot Appl i cati on annotated class is used to search for
@nt ity items. Using a root package also allows component scan to apply only on your project.

Tip
If you don’t want to use @spr i ngBoot Appl i cat i on, the @nabl eAut oConf i gurati on and

@conponent Scan annotations that it imports defines that behaviour so you can also use that
instead.

The following listing shows a typical layout:

com
+- exanpl e
+- nyapplication

+- Application.java

I

+- cust onmer

| +- Custoner.java
| +- CustonerController.java
| +- Cust oner Service.java
| +- Custoner Repository.java
I
+-

or der
+ Order.java
+- OrderController.java
+- Order Service. java
+- OrderRepository.java

The Application.java file would declare the min method, along with the basic
@5pr i ngBoot Appl i cati on, as follows:

package com exanpl e. myapplication;

i nport org.springfranework. boot. Spri ngApplication;

2.1.0.BUILD-SNAPSHOT Spring Boot 34

Spring Boot Reference Guide

inport org.springfranmework. boot. aut oconfi gure. Spri ngBoot Appl i cati on;

@Bpr i ngBoot Appl i cati on
public class Application {

public static void main(String[] args) {
Spri ngApplication. run(Application.class, args);

}

2.1.0.BUILD-SNAPSHOT Spring Boot

35

Spring Boot Reference Guide

15. Configuration Classes

Spring Boot favors Java-based configuration. Although it is possible to use Spri ngAppl i cati on with
XML sources, we generally recommend that your primary source be a single @onf i gur at i on class.
Usually the class that defines the mai n method is a good candidate as the primary @onf i gur ati on.

Tip

Many Spring configuration examples have been published on the Internet that use XML
configuration. If possible, always try to use the equivalent Java-based configuration. Searching
for Enabl e* annotations can be a good starting point.

15.1 Importing Additional Configuration Classes

You need not put all your @onf i gur at i on into a single class. The @ nport annotation can be used
to import additional configuration classes. Alternatively, you can use @onponent Scan to automatically
pick up all Spring components, including @onf i gur at i on classes.

15.2 Importing XML Configuration

If you absolutely must use XML based configuration, we recommend that you still start with
a @onfiguration class. You can then use an @ nport Resource annotation to load XML
configuration files.

2.1.0.BUILD-SNAPSHOT Spring Boot 36

Spring Boot Reference Guide

16. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring application based on the
jar dependencies that you have added. For example, if HSQLDB is on your classpath, and you have not
manually configured any database connection beans, then Spring Boot auto-configures an in-memory
database.

You need to opt-in to auto-configuration by adding the @enabl eAut oConfi guration or
@pr i ngBoot Appl i cat i on annotations to one of your @onf i gur at i on classes.

Tip

You should only ever add one @pr i ngBoot Appl i cati on or @nabl eAut oConfi gurati on
annotation. We generally recommend that you add one or the other to your primary
@confi gurati on class only.

16.1 Gradually Replacing Auto-configuration

Auto-configuration is non-invasive. At any point, you can start to define your own configuration to replace
specific parts of the auto-configuration. For example, if you add your own Dat aSour ce bean, the default
embedded database support backs away.

If you need to find out what auto-configuration is currently being applied, and why, start your application
with the - - debug switch. Doing so enables debug logs for a selection of core loggers and logs a
conditions report to the console.

16.2 Disabling Specific Auto-configuration Classes

If you find that specific auto-configuration classes that you do not want are being applied, you can
use the exclude attribute of @nabl eAut oConf i gur at i on to disable them, as shown in the following
example:

i nport org.springfranmework. boot. aut oconfi gure. *;
i nport org.springframework. boot . aut oconfigure.jdbc.*;
i nport org.springframework. context.annotation.*;

@Confi guration
@Enabl eAut oConf i gur at i on(excl ude={ Dat aSour ceAut oConf i gur ati on. cl ass})
public class MyConfiguration {

}

If the class is not on the classpath, you can use the excl udeNane attribute of the annotation and specify
the fully qualified name instead. Finally, you can also control the list of auto-configuration classes to
exclude by using the spri ng. aut oconf i gur e. excl ude property.

Tip

You can define exclusions both at the annotation level and by using the property.

2.1.0.BUILD-SNAPSHOT Spring Boot 37

Spring Boot Reference Guide

17. Spring Beans and Dependency Injection

You are free to use any of the standard Spring Framework techniques to define your beans and their
injected dependencies. For simplicity, we often find that using @onponent Scan (to find your beans)
and using @\ut owi r ed (to do constructor injection) works well.

If you structure your code as suggested above (locating your application class in a root package), you
can add @onponent Scan without any arguments. All of your application components (@onponent ,
@ber vi ce, @Reposi tory, @ontroll er etc.) are automatically registered as Spring Beans.

The following example shows a @ber vi ce Bean that uses constructor injection to obtain a required
Ri skAssessor bean:

package com exanpl e. service;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. stereotype. Servi ce;

@ber vi ce
public class DatabaseAccount Service inpl enents Account Service {

private final Ri skAssessor riskAssessor;
@\ut owi r ed
publ i ¢ Dat abaseAccount Servi ce(Ri skAssessor riskAssessor) {

this.riskAssessor = riskAssessor;

}

Il

If a bean has one constructor, you can omit the @\ut owi r ed, as shown in the following example:

@ber vi ce
public class DatabaseAccount Service inpl enents Account Service {

private final Ri skAssessor riskAssessor;

publ i ¢ Dat abaseAccount Servi ce(Ri skAssessor riskAssessor) {
this.riskAssessor = riskAssessor;

}

Il

Tip

Notice how using constructor injection lets the ri skAssessor field be marked as fi nal ,
indicating that it cannot be subsequently changed.

2.1.0.BUILD-SNAPSHOT Spring Boot 38

Spring Boot Reference Guide

18. Using the @SpringBootApplication Annotation

Many Spring Boot developers like their apps to use auto-configuration, component scan and be able to
define extra configuration on their "application class". A single @pr i ngBoot Appl i cat i on annotation

can be used to enable those three features, that is:

» @nabl eAut oConfi gur ati on: enable Spring Boot’s auto-configuration mechanism

e @onponent Scan: enable @onponent scan on the package where the application is located (see

the best practices)

* @onfiguration: allow to register extra beans in the context or import additional configuration

classes

The @ppringBoot Application annotation is equivalent to wusing @onfiguration,
@nabl eAut oConfi gur ati on, and @onponent Scan with their default attributes, as shown in the

following example:

package com exanpl e. nyappl i cati on;

i nport org.springfranework. boot. Spri ngApplication;
i nport org.springfranework. boot . aut oconfi gure. Spri ngBoot Appl i cati on;

@pri ngBoot Appl i cation // sanme as @onfiguration @nabl eAut oConfi guration @onponent Scan
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

Note

@Bpri ngBoot Application also provides aliases to customize the attributes of
@nabl eAut oConfi gur ati on and @onponent Scan.

Note

None of these features are mandatory and you may choose to replace this single annotation by
any of the features that it enables. For instance, you may not want to use component scan in
your application:

package com exanpl e. nyappl i cati on;

i nport org.springfranework. boot. Spri ngApplication;

i nport org.springframework. cont ext. annot ati on. Conponent Scan
i mport org.springfranmework. context.annotati on. Configuration;
i mport org.springfranework. context.annotation. | nport;

@onfiguration

@nabl eAut oConf i guration

@nport ({ M/Config.class, MAnotherConfig.class })
public class Application {

public static void main(String[] args) {
Spri ngApplication. run(Application.class, args);
}

2.1.0.BUILD-SNAPSHOT Spring Boot

39

Spring Boot Reference Guide

In this example, Application is just like any other Spring Boot application except that
@onponent -annotated classes are not detected automatically and the user-defined beans are
imported explicitly (see @ nport).

2.1.0.BUILD-SNAPSHOT Spring Boot

40

Spring Boot Reference Guide

19. Running Your Application

One of the biggest advantages of packaging your application as a jar and using an embedded HTTP
server is that you can run your application as you would any other. Debugging Spring Boot applications
is also easy. You do not need any special IDE plugins or extensions.

Note

This section only covers jar based packaging. If you choose to package your application as a war
file, you should refer to your server and IDE documentation.

19.1 Running from an IDE

You can run a Spring Boot application from your IDE as a simple Java application. However, you first
need to import your project. Import steps vary depending on your IDE and build system. Most IDEs can
import Maven projects directly. For example, Eclipse users can select | nport ..._, Exi sting Maven
Proj ect s from the Fi | e menu.

If you cannot directly import your project into your IDE, you may be able to generate IDE metadata by
using a build plugin. Maven includes plugins for Eclipse and IDEA. Gradle offers plugins for various IDESs.

Tip

If you accidentally run a web application twice, you see a “Port already in use” error. STS users
can use the Rel aunch button rather than the Run button to ensure that any existing instance
is closed.

19.2 Running as a Packaged Application

If you use the Spring Boot Maven or Gradle plugins to create an executable jar, you can run your
application using j ava -j ar, as shown in the following example:

‘ $ java -jar target/ nyapplication-0.0.1- SNAPSHOT. j ar

Itis also possible to run a packaged application with remote debugging support enabled. Doing so lets
you attach a debugger to your packaged application, as shown in the following example:

$ java - Xdebug - Xrunj dwp: server =y, transport=dt _socket, addr ess=8000, suspend=n \
-jar target/nyapplication-0.0.1- SNAPSHOT. j ar

19.3 Using the Maven Plugin

The Spring Boot Maven plugin includes a r un goal that can be used to quickly compile and run your
application. Applications run in an exploded form, as they do in your IDE. The following example shows
a typical Maven command to run a Spring Boot application:

‘ $ nmvn spring-boot:run

You might also want to use the MAVEN OPTS operating system environment variable, as shown in the
following example:

‘ $ export MAVEN OPTS=- Xnx1024m

2.1.0.BUILD-SNAPSHOT Spring Boot 41

https://maven.apache.org/plugins/maven-eclipse-plugin/
https://maven.apache.org/plugins/maven-idea-plugin/
https://docs.gradle.org/4.2.1/userguide/userguide.html

Spring Boot Reference Guide

19.4 Using the Gradle Plugin

The Spring Boot Gradle plugin also includes a boot Run task that can be used to run your application in
an exploded form. The boot Run task is added whenever you apply the or g. spri ngf r amewor k. boot
and j ava plugins and is shown in the following example:

‘ $ gradl e boot Run

You might also want to use the JAVA_OPTS operating system environment variable, as shown in the
following example:

‘ $ export JAVA OPTS=- Xmx1024m

19.5 Hot Swapping

Since Spring Boot applications are just plain Java applications, JVM hot-swapping should work out of the
box. JVM hot swapping is somewhat limited with the bytecode that it can replace. For a more complete
solution, JRebel can be used.

The spri ng- boot - devt ool s module also includes support for quick application restarts. See the
Chapter 20, Developer Tools section later in this chapter and the Hot swapping “How-to” for details.

2.1.0.BUILD-SNAPSHOT Spring Boot 42

https://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

20. Developer Tools

Spring Boot includes an additional set of tools that can make the application development experience a
little more pleasant. The spri ng- boot - devt ool s module can be included in any project to provide
additional development-time features. To include devtools support, add the module dependency to your
build, as shown in the following listings for Maven and Gradle:

Maven.

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-devtool s</artifactld>

<opti onal >t rue</ opti onal >
</ dependency>
</ dependenci es>

Gradle.

dependenci es {
conpi | e("org. springframewor k. boot : spri ng- boot - devt ool s")

}

Note

Developer tools are automatically disabled when running a fully packaged application. If your
application is launched from j ava -j ar or if it is started from a special classloader, then it is
considered a “production application”. Flagging the dependency as optional in Maven or using
conpi | eOnl y in Gradle is a best practice that prevents devtools from being transitively applied
to other modules that use your project.

Tip

Repackaged archives do not contain devtools by default. If you want to use a certain remote
devtools feature, you need to disable the excl udeDevt ool s build property to include it. The
property is supported with both the Maven and Gradle plugins.

20.1 Property Defaults

Several of the libraries supported by Spring Boot use caches to improve performance. For example,
template engines cache compiled templates to avoid repeatedly parsing template files. Also, Spring
MVC can add HTTP caching headers to responses when serving static resources.

While caching is very beneficial in production, it can be counter-productive during development,
preventing you from seeing the changes you just made in your application. For this reason, spring-boot-
devtools disables the caching options by default.

Cache options are usually configured by settings in your application. properties file. For
example, Thymeleaf offers the spri ng. t hynel eaf . cache property. Rather than needing to set
these properties manually, the spri ng-boot - devt ool s module automatically applies sensible
development-time configuration.

Because you need more information about web requests while developing Spring MVC and Spring
WebFlux applications, developer tools will enable DEBUG logging for the web logging group. This will
give you information about the incoming request, which handler is processing it, the response outcome,

2.1.0.BUILD-SNAPSHOT Spring Boot 43

Spring Boot Reference Guide

etc. If you wish to log all request details (including potentially sensitive information), you can turn on the
spring. http.l og-request-detail s configuration property.

Note

If you don’'t want property defaults to be applied you can set spring. devt ool s. add-
propertiestofal seinyourapplication. properties.

Tip

For a complete list of the properties that are applied by the devtools, see
DevToolsPropertyDefaultsPostProcessor.

20.2 Automatic Restart

Applications that use spri ng- boot - devt ool s automatically restart whenever files on the classpath
change. This can be a useful feature when working in an IDE, as it gives a very fast feedback loop for
code changes. By default, any entry on the classpath that points to a folder is monitored for changes.
Note that certain resources, such as static assets and view templates, do not need to restart the

application.

Triggering a restart

As DevTools monitors classpath resources, the only way to trigger a restart is to update the
classpath. The way in which you cause the classpath to be updated depends on the IDE that you
are using. In Eclipse, saving a modified file causes the classpath to be updated and triggers a
restart. In Intellid IDEA, building the project (Bui | d -> Bui | d Pr oj ect) has the same effect.

Note

As long as forking is enabled, you can also start your application by using the supported build
plugins (Maven and Gradle), since DevTools needs an isolated application classloader to operate
properly. By default, Gradle and Maven do that when they detect DevTools on the classpath.

Tip

Automatic restart works very well when used with LiveReload. See the LiveReload section for
details. If you use JRebel, automatic restarts are disabled in favor of dynamic class reloading.
Other devtools features (such as LiveReload and property overrides) can still be used.

Note

DevTools relies on the application context's shutdown hook to close it during
a restart. It does not work correctly if you have disabled the shutdown hook
(SpringApplication. set Regi st er Shut downHook(f al se)).

Note

When deciding if an entry on the classpath should trigger a restart when it changes, DevTools
automatically ignores projects named spri ng- boot, spri ng-boot - devt ool s, spri ng-
boot - aut oconfi gur e, spri ng- boot - act uat or, and spri ng- boot -starter.

2.1.0.BUILD-SNAPSHOT Spring Boot 44

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/env/DevToolsPropertyDefaultsPostProcessor.java

Spring Boot Reference Guide

Note

DevTools needs to customize the Resour ceLoader used by the Appl i cat i onCont ext . If your
application provides one already, it is going to be wrapped. Direct override of the get Resour ce
method on the Appl i cat i onCont ext is not supported.

Restart vs Reload

The restart technology provided by Spring Boot works by using two classloaders. Classes that do
not change (for example, those from third-party jars) are loaded into a base classloader. Classes
that you are actively developing are loaded into a restart classloader. When the application is
restarted, the restart classloader is thrown away and a new one is created. This approach means
that application restarts are typically much faster than “cold starts”, since the base classloader is
already available and populated.

If you find that restarts are not quick enough for your applications or you encounter classloading
issues, you could consider reloading technologies such as JRebel from ZeroTurnaround. These
work by rewriting classes as they are loaded to make them more amenable to reloading.

Logging changes in condition evaluation

By default, each time your application restarts, a report showing the condition evaluation delta is logged.
The report shows the changes to your application’s auto-configuration as you make changes such as
adding or removing beans and setting configuration properties.

To disable the logging of the report, set the following property:

spring. devtool s.restart.| og-condition-eval uati on-del t a=fal se

Excluding Resources

Certain resources do not necessarily need to trigger a restart when they are changed. For example,
Thymeleaf templates can be edited in-place. By default, changing resources in / META- | NF/ maven,
/ META- I NF/ resources, /resources, /static, /public, or /tenpl at es does not trigger a
restart but does trigger a live reload. If you want to customize these exclusions, you can use the
spring. devt ool s.restart. excl ude property. For example, to exclude only /static and /
publ i ¢ you would set the following property:

spring.devtool s.restart. exclude=static/**, public/**

Tip

If you want to keep those defaults and add additional exclusions, use the
spring. devtool s.restart. addi ti onal - excl ude property instead.

Watching Additional Paths

You may want your application to be restarted or reloaded when you make changes to files
that are not on the classpath. To do so, use the spring. devtool s.restart. additional -
pat hs property to configure additional paths to watch for changes. You can use the
spring. devtool s.restart. excl ude property described earlier to control whether changes
beneath the additional paths trigger a full restart or a live reload.

2.1.0.BUILD-SNAPSHOT Spring Boot 45

https://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

Disabling Restart

If you do not want to use the restart feature, you can disable it by using the
spring. devt ool s. restart. enabl ed property. In most cases, you can set this property in your
appl i cation. properti es (doing so still initializes the restart classloader, but it does not watch for
file changes).

If you need to completely disable restart support (for example, because it does not work with a specific
library), you need to set the spring. devt ool s. restart. enabl ed Syst em property to fal se
before calling Spri ngAppl i cati on. run(..), as shown in the following example:

public static void main(String[] args) {
System set Property("spring. devtool s.restart.enabl ed", "false");
Spri ngAppl i cation. run(M/App. cl ass, args);

}

Using a Trigger File

If you work with an IDE that continuously compiles changed files, you might prefer to trigger restarts only
at specific times. To do so, you can use a “trigger file”, which is a special file that must be modified when
you want to actually trigger a restart check. Changing the file only triggers the check and the restart
only occurs if Devtools has detected it has to do something. The trigger file can be updated manually
or with an IDE plugin.

To use a trigger file, set the spri ng. devtool s.restart.trigger-fil e property to the path of
your trigger file.

Tip

You might want to set spri ng. devtool s.restart.trigger-file as a global setting, so
that all your projects behave in the same way.

Customizing the Restart Classloader

As described earlier in the Restart vs Reload section, restart functionality is implemented by using
two classloaders. For most applications, this approach works well. However, it can sometimes cause
classloading issues.

By default, any open project in your IDE is loaded with the “restart” classloader, and any regular . j ar
file is loaded with the “base” classloader. If you work on a multi-module project, and not every module
is imported into your IDE, you may need to customize things. To do so, you can create a META- | NF/
spri ng-devt ool s. properti es file.

The spri ng- devt ool s. properti es file can contain properties prefixed with rest art . excl ude
and restart.include. Thei ncl ude elements are items that should be pulled up into the “restart”
classloader, and the excl ude elements are items that should be pushed down into the “base
classloader. The value of the property is a regex pattern that is applied to the classpath, as shown in
the following example:

restart.exclude. conpanycommonl i bs=/ nycor p-comon-[\\w]+\.jar
restart.include. projectcommon=/nycorp-nmyproj-[\\w]+\.jar

2.1.0.BUILD-SNAPSHOT Spring Boot 46

Spring Boot Reference Guide

Note

All property keys must be unique. As long as a property starts with restart. i ncl ude. or
restart.excl ude. itis considered.

Tip

All META- I NF/ spri ng-devt ool s. properties from the classpath are loaded. You can
package files inside your project, or in the libraries that the project consumes.

Known Limitations

Restart functionality does not work well with objects that are deserialized by
using a standard bjectlnputStream |If you need to deserialize data, you
may need to use Spring’s Configurabl eCbjectlnputStream in combination with
Thread. current Thread() . get Cont ext C assLoader ().

Unfortunately, several third-party libraries deserialize without considering the context classloader. If you
find such a problem, you need to request a fix with the original authors.

20.3 LiveReload

The spri ng- boot - devt ool s module includes an embedded LiveReload server that can be used
to trigger a browser refresh when a resource is changed. LiveReload browser extensions are freely
available for Chrome, Firefox and Safari from livereload.com.

If you do not want to start the LiveReload server when your application runs, you can set the
spring. devt ool s. | i ver el oad. enabl ed property to f al se.

Note

You can only run one LiveReload server at a time. Before starting your application, ensure that
no other LiveReload servers are running. If you start multiple applications from your IDE, only the
first has LiveReload support.

20.4 Global Settings

You can configure global devtools settings by adding a file named . spring-boot -
devt ool s. properti es to your $HOVE folder (note that the filename starts with “.”). Any properties
added to this file apply to all Spring Boot applications on your machine that use devtools. For example,

to configure restart to always use a trigger file, you would add the following property:

~/.spring-boot-devtools.properties.

spring.devtool s.reload.trigger-file=.rel oadtrigger

20.5 Remote Applications

The Spring Boot developer tools are not limited to local development. You can also use several features
when running applications remotely. Remote support is opt-in. To enable it, you need to make sure that
devt ool s is included in the repackaged archive, as shown in the following listing:

2.1.0.BUILD-SNAPSHOT Spring Boot a7

http://livereload.com/extensions/

Spring Boot Reference Guide

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactld>
<confi guration>
<excl udeDevt ool s>f al se</ excl udeDevt ool s>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Then you need to set a spri ng. devt ool s. renpt e. secret property, as shown in the following
example:

spring. devt ool s. renot e. secr et =nmysecr et

Warning

Enabling spri ng- boot - devt ool s on a remote application is a security risk. You should never
enable support on a production deployment.

Remote devtools support is provided in two parts: a server-side endpoint that accepts connections and
a client application that you run in your IDE. The server component is automatically enabled when
the spring. devt ool s. renot e. secret property is set. The client component must be launched
manually.

Running the Remote Client Application

The remote client application is designed to be run from within your IDE. You need to run
or g. spri ngframewor k. boot . devt ool s. Renpt eSpri ngAppl i cat i on with the same classpath
as the remote project that you connect to. The application’s single required argument is the remote URL
to which it connects.

For example, if you are using Eclipse or STS and you have a project named ny- app that you have
deployed to Cloud Foundry, you would do the following:

Select Run Confi gur ati ons...from the Run menu.
» Create anew Java Appl i cati on “launch configuration”.
» Browse for the my- app project.

e Useorg. springframework. boot . devt ool s. Renot eSpri ngAppl i cati on as the main class.

Add htt ps:// nmyapp. cfapps. i otothe Program ar gunent s (or whatever your remote URL is).

A running remote client might resemble the following listing:

\ -
F-J0 NN -0)))))
\

—

|
—
—
—

;. Spring Boot Renpte :: 2.1.0.BU LD SNAPSHOT

2015- 06- 10 18:25:06.632 | NFO 14938 --- | mai n] o.s.b.devtools. Renot eSpri ngAppl i cation
Starting RenoteSpringApplication on pwrbp with PI D 14938 (/Users/pwebb/ proj ects/spring-boot/code/

2.1.0.BUILD-SNAPSHOT Spring Boot 48

Spring Boot Reference Guide

spring-boot-devtool s/target/classes started by pwebb in /Users/pwebb/ projects/spring-boot/code/spring-
boot - sanpl es/ spri ng- boot - sanpl e- devt ool s)
2015- 06- 10 18:25:06.671 | NFO 14938 --- | mai n] s.c.a.AnnotationConfi gApplicationContext
Ref reshi ng org. springfranmewor k. cont ext. annot ati on. Annot ati onConfi gAppl i cati onCont ext @al7b7b6: startup
date [Wed Jun 10 18: 25: 06 PDT 2015]; root of context hierarchy

2015- 06- 10 18: 25: 07. 043 WARN 14938 --- [main] o.s.b.d.r.c.RenoteC ientConfiguration . The
connection to http://local host:8080 is insecure. You should use a URL starting with 'https://".

2015- 06- 10 18:25:07.074 | NFO 14938 --- | mai n] o.s.b.d. a Optional Li veRel oadSer ver
Li veRel oad server is running on port 35729

2015- 06- 10 18: 25:07.130 |NFO 14938 --- [mai n] o.s.b.devtool s. Renot eSpri ngAppl i cati on

Started RenoteSpringApplication in 0.74 seconds (JVM running for 1.105)

Note

Because the remote client is using the same classpath as the real application it can directly read
application properties. This is how the spri ng. devt ool s. r enpt e. secr et property is read
and passed to the server for authentication.

Tip

It is always advisable to use htt ps:// as the connection protocol, so that traffic is encrypted
and passwords cannot be intercepted.

Tip

If you need to use a proxy to access the remote application, configure the
spring. devt ool s. renpt e. proxy. host and spring. devt ool s. renpt e. proxy. port
properties.

Remote Update

The remote client monitors your application classpath for changes in the same way as the local restart.
Any updated resource is pushed to the remote application and (if required) triggers a restart. This can
be helpful if you iterate on a feature that uses a cloud service that you do not have locally. Generally,
remote updates and restarts are much quicker than a full rebuild and deploy cycle.

Note

Files are only monitored when the remote client is running. If you change a file before starting the
remote client, it is not pushed to the remote server.

2.1.0.BUILD-SNAPSHOT Spring Boot 49

Spring Boot Reference Guide

21. Packaging Your Application for Production

Executable jars can be used for production deployment. As they are self-contained, they are also ideally
suited for cloud-based deployment.

For additional “production ready” features, such as health, auditing, and metric REST or JMX end-
points, consider adding spri ng- boot - act uat or. See Part V, “Spring Boot Actuator: Production-

ready features” for detalils.

2.1.0.BUILD-SNAPSHOT Spring Boot 50

Spring Boot Reference Guide

22. What to Read Next

You should now understand how you can use Spring Boot and some best practices that you should
follow. You can now go on to learn about specific Spring Boot features in depth, or you could skip ahead
and read about the “production ready” aspects of Spring Boot.

2.1.0.BUILD-SNAPSHOT Spring Boot 51

Part IV. Spring Boot features

This section dives into the details of Spring Boot. Here you can learn about the key features that you may
want to use and customize. If you have not already done so, you might want to read the "Part Il, “Getting
Started™ and "Part IIl, “Using Spring Boot™ sections, so that you have a good grounding of the basics.

Spring Boot Reference Guide

23. SpringApplication

The SpringApplication class provides a convenient way to bootstrap a Spring application
that is started from a nain() method. In many situations, you can delegate to the static
Spri ngAppl i cati on. run method, as shown in the following example:

public static void main(String[] args) {
Spri ngAppl i cation. run(M/SpringConfiguration.class, args);
}

When your application starts, you should see something similar to the following output:

NN () v v
CON— Ny vy
L5 WA B 1 I Y A GO I D B IO B
S [) I Y I [SR B
| | | 1=_1_1_1
Spring Boot :: v2. 1. 0. BU LD SNAPSHOT
2013-07-31 00:08:16.117 | NFO 56603 --- [mai n] o.s.b.s.app. Sanpl eApplication
Starting Sanpl eApplication v0.1.0 on nyconputer with PI D 56603 (/apps/nyapp.jar started by pwebb)
2013-07-31 00: 08: 16. 166 | NFO 56603 --- [mai n]

ati onConfi gServl et WebSer ver Appl i cati onContext : Refreshing
org. spri ngframewor k. boot . web. servl et. cont ext. Annot ati onConfi gSer vl et WebSer ver Appl i cati onCont ext @e5a8246:
startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context hierarchy

2014- 03-04 13:09:54.912 |NFO 41370 --- | mai n] .t.Toncat Servl et WebSer ver Factory : Server
initialized with port: 8080
2014-03-04 13: 09:56.501 |NFO 41370 --- [mai n] o.s.b.s.app. Sanpl eAppl i cation

Started Sanpl eApplication in 2.992 seconds (JVM running for 3.658)

By default, | NFO logging messages are shown, including some relevant startup details, such as the
user that launched the application. If you need a log level other than | NFQ, you can set it, as described
in Section 26.4, “Log Levels”,

23.1 Startup Failure

If your application fails to start, registered Fai | ur eAnal yzer s get a chance to provide a dedicated
error message and a concrete action to fix the problem. For instance, if you start a web application on
port 8080 and that port is already in use, you should see something similar to the following message:

B R R Y

APPLI CATI ON FAI LED TO START

kkkkkkkkkkkkkkkkkkkkkkkkkk*

Descri ption:
Enbedded servlet container failed to start. Port 8080 was already in use.
Action:

Identify and stop the process that's |listening on port 8080 or configure this application to listen on
anot her port.

Note

Spring Boot provides numerous Fai | ur eAnal yzer implementations, and you can add your own.

If no failure analyzers are able to handle the exception, you can still
display the full conditions report to better understand what went wrong. To do

2.1.0.BUILD-SNAPSHOT Spring Boot 53

Spring Boot Reference Guide

so, you need to enable the debug property or enable DEBUG logging for
org. spri ngframewor k. boot . aut oconfi gur e. | oggi ng. Condi ti onEval uati onReport Loggi ngLi st ener

For instance, if you are running your application by using j ava -j ar, you can enable the debug
property as follows:

‘ $ java -jar nyproject-0.0.1-SNAPSHOT. j ar --debug

23.2 Customizing the Banner

The banner that is printed on start up can be changed by adding a banner . t xt file to your classpath
or by setting the spri ng. banner .| ocati on property to the location of such a file. If the file has
an encoding other than UTF-8, you can set spri ng. banner. char set . In addition to a text file, you
can also add a banner. gi f, banner. j pg, or banner. png image file to your classpath or set the
spring. banner. i mage. | ocati on property. Images are converted into an ASCII art representation
and printed above any text banner.

Inside your banner . t xt file, you can use any of the following placeholders:

Table 23.1. Banner variables

Variable Description

${application. version} The version number of your application, as
declared in MANI FEST. MF. For example,
| npl enent ati on-Version: 1.0 is printed
as1.0.

${application.formatted-version} The version number of your application, as
declared in MANI FEST. MF and formatted for
display (surrounded with brackets and prefixed
with v). For example (v1. 0) .

${spring-boot . versi on} The Spring Boot version that you are using. For
example 2. 1. 0. BUI LD- SNAPSHOT.

${spring-boot.formatted-version} The Spring Boot version that you are using,
formatted for display (surrounded with
brackets and prefixed with v). For example
(v2.1.0. BU LD SNAPSHOQT) .

${ Ansi . NAVE} (or ${ Ansi Col or . NAVE}, Where NAME is the name of an ANSI escape
${ Ansi Backgr ound. NAVE}, code. See Ansi Pr opert ySour ce for details.
${ Ansi Styl e. NAME})

${application.title} The title of your application, as declared
in MANI FEST. MF. For example
I mpl ementation-Title: MyApp is printed

as MyApp.

Tip

The SpringApplication. set Banner(..) method can be used if you want to generate
a banner programmatically. Use the or g. spri ngf ramewor k. boot . Banner interface and
implement your own pri nt Banner () method.

2.1.0.BUILD-SNAPSHOT Spring Boot 54

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/ansi/AnsiPropertySource.java

Spring Boot Reference Guide

You can also use the spri ng. mai n. banner - mode property to determine if the banner has to be
printed on Syst em out (consol e), sent to the configured logger (I 0g), or not produced at all (of f).

The printed banner is registered as a singleton bean under the following name: spr i ngBoot Banner .

Note

YAML maps of f to f al se, so be sure to add quotes if you want to disable the banner in your
application, as shown in the following example:

spring:
mai n:
banner - node: "off"

23.3 Customizing SpringApplication

If the Spri ngAppl i cat i on defaults are not to your taste, you can instead create a local instance and
customize it. For example, to turn off the banner, you could write:

public static void main(String[] args) {
SpringApplication app = new SpringApplication(MSpringConfiguration.class);
app. set Banner Mode(Banner . Mode. OFF) ;
app.run(args);

}

Note

The constructor arguments passed to Spr i ngAppl i cat i on are configuration sources for Spring
beans. In most cases, these are references to @onf i gur at i on classes, but they could also be
references to XML configuration or to packages that should be scanned.

It is also possible to configure the Spri ngAppl i cati on by using an appl i cation. properties
file. See Chapter 24, Externalized Configuration for details.

For a complete list of the configuration options, see the Spri ngAppl i cati on Javadoc.

23.4 Fluent Builder API

If you need to build an Applicati onContext hierarchy (multiple contexts with a parent/
child relationship) or if you prefer using a “fluent” builder API, you can use the
Spri ngAppl i cati onBui | der.

The Spri ngAppl i cati onBui | der lets you chain together multiple method calls and includes par ent
and chi | d methods that let you create a hierarchy, as shown in the following example:

new Spri ngAppl i cati onBui | der ()
. sources(Parent. cl ass)
.chil d(Application.class)
. banner Mode(Banner . Mode. OFF)
.run(args);

Note

There are some restrictions when creating an Appl i cat i onCont ext hierarchy. For example,
Web components must be contained within the child context, and the same Envi r onnment is

2.1.0.BUILD-SNAPSHOT Spring Boot 55

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/SpringApplication.html

Spring Boot Reference Guide

used for both parent and child contexts. See the Spri ngAppl i cati onBui | der Javadoc for
full details.

23.5 Application Events and Listeners

In addition to the usual Spring Framework events, such as Cont ext RefreshedEvent, a
Spri ngAppl i cati on sends some additional application events.

Note

Some events are actually triggered before the ApplicationContext is created,
SO you cannot register a listener on those as a @ean. You can
register them with the SpringApplication.addListeners(.) method or the
SpringApplicationBuilder.listeners(.) method.

If you want those listeners to be registered automatically, regardless of the way the application is
created, you can add a META- | NF/ spri ng. fact ori es file to your project and reference your
listener(s) by using the or g. spri ngf ramewor k. cont ext . Appl i cati onLi st ener key, as
shown in the following example:

org. springframewor k. cont ext . Appl i cati onLi st ener =com exanpl e. proj ect. M/Li st ener

Application events are sent in the following order, as your application runs:

1. An ApplicationStarti ngEvent is sent at the start of a run but before any processing, except
for the registration of listeners and initializers.

2. An Appl i cat i onEnvi r onnent Pr epar edEvent is sent when the Envi r onnent to be used in the
context is known but before the context is created.

3. An Appl i cat i onPr epar edEvent is sentjust before the refresh is started but after bean definitions
have been loaded.

4. An ApplicationStartedEvent is sent after the context has been refreshed but before any
application and command-line runners have been called.

5. An Appl i cati onReadyEvent is sent after any application and command-line runners have been
called. It indicates that the application is ready to service requests.

6. An Appl i cat i onFai | edEvent is sent if there is an exception on startup.

Tip

You often need not use application events, but it can be handy to know that they exist. Internally,
Spring Boot uses events to handle a variety of tasks.

Application events are sent by using Spring Framework’s event publishing mechanism. Part of this
mechanism ensures that an event published to the listeners in a child context is also published
to the listeners in any ancestor contexts. As a result of this, if your application uses a hierarchy
of Spri ngAppl i cati on instances, a listener may receive multiple instances of the same type of
application event.

2.1.0.BUILD-SNAPSHOT Spring Boot 56

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/builder/SpringApplicationBuilder.html
https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/context/event/ContextRefreshedEvent.html

Spring Boot Reference Guide

To allow your listener to distinguish between an event for its context and an event for a
descendant context, it should request that its application context is injected and then compare
the injected context with the context of the event. The context can be injected by implementing
Appl i cati onCont ext Awar e or, if the listener is a bean, by using @\ut owi r ed.

23.6 Web Environment

A SpringAppl i cati on attempts to create the right type of Appl i cat i onCont ext on your behalf.
The algorithm used to determine a WebAppl i cati onType is fairly simple:

 If Spring MVC is present, an Annot ati onConfi gSer vl et WebSer ver Appl i cat i onCont ext is
used

«If Spring MVC is not present and Spring WebFlux is present, an
Annot at i onConf i gReacti veWebSer ver Appl i cat i onCont ext is used

» Otherwise, Annot at i onConf i gAppl i cati onCont ext is used

This means that if you are using Spring MVC and the new WebC i ent from Spring WebFlux in
the same application, Spring MVC will be used by default. You can override that easily by calling
set WebAppl i cati onType(WebAppl i cati onType).

It is also possible to take complete control of the Appl i cat i onCont ext type that is used by calling
set Appl i cati onContext Cl ass(..).

Tip

It is often desirable to call set WebAppl i cati onType(WebAppl i cati onType. NONE) when
using Spri ngAppl i cat i on within a JUnit test.

23.7 Accessing Application Arguments

If you need to access the application arguments that were passed to Spri ngAppli cati on. run(...
), you can inject a org.springframework. boot. Applicati onArgunents bean. The
Appl i cati onAr gurrent s interface provides access to both the raw St ri ng[] arguments as well as
parsed opti on and non- opt i on arguments, as shown in the following example:

i nport org.springframework. boot . *;
i nport org.springfranework. beans. factory. annotati on. *;
i nport org.springfranework. stereotype. *;

@onponent
public class M/Bean {

@Aut owi r ed
public MyBean(ApplicationArgunents args) {
bool ean debug = args. contai nsOpti on("debug");
List<String> files = args. get NonOpti onArgs();
/1 if run with "--debug logfile.txt" debug=true, files=["logfile.txt"]

}
}

Tip

Spring Boot also registers a CommandLi nePr opert ySour ce with the Spring Envi r onnent .
This lets you also inject single application arguments by using the @/al ue annotation.

2.1.0.BUILD-SNAPSHOT Spring Boot 57

Spring Boot Reference Guide

23.8 Using the ApplicationRunner or CommandLineRunner

If you need to run some specific code once the Spri ngAppl i cati on has started, you can implement
the Appl i cat i onRunner or CommandLi neRunner interfaces. Both interfaces work in the same way
and offer a single r un method, which is called just before Spri ngAppl i cati on. run(..) completes.

The CommandLi neRunner interfaces provides access to application arguments as a simple string
array, whereas the Appl i cati onRunner uses the Appl i cati onAr gument s interface discussed
earlier. The following example shows a ConmandLi neRunner with a r un method:

i nport org.springfranework. boot . *;
i nport org.springfranework. stereotype. *;

@onponent
public class MyBean inplenents CommandLi neRunner {

public void run(String... args) {
/1 Do sonething...
}

If several ConmandLi neRunner or Appl i cati onRunner beans are defined that must be called in a
specific order, you can additionally implement the or g. spri ngf r amewor k. cor e. Or der ed interface
or use the or g. spri ngf ramewor k. cor e. annot ati on. Or der annotation.

23.9 Application Exit

Each SpringApplication registers a shutdown hook with the JVM to ensure that the
Appl i cati onCont ext closes gracefully on exit. All the standard Spring lifecycle callbacks (such as
the Di sposabl eBean interface or the @r eDest r oy annotation) can be used.

In addition, beans may implement the org. springfranework. boot . Exi t CodeGener at or
interface if they wish to return a specific exit code when Spri ngAppl i cati on. exit() is called. This
exit code can then be passed to Syst em exi t () toreturnitas a status code, as shown in the following
example:

@pr i ngBoot Appl i cati on
public class ExitCodeApplication {

@Bean
publ i c ExitCodeGenerator exitCodeGenerator() {
return () -> 42;

}

public static void main(String[] args) {
System exi t (Spri ngApplication
.exit(SpringApplication.run(ExitCodeApplication.class, args)));

Also, the Exi t CodeGener at or interface may be implemented by exceptions. When such an exception
is encountered, Spring Boot returns the exit code provided by the implemented get Exi t Code()
method.

2.1.0.BUILD-SNAPSHOT Spring Boot 58

Spring Boot Reference Guide

23.10 Admin Features

It is possible to enable admin-related features for the application by
specifying the spring.application.adm n.enabl ed property. This exposes the
Spri ngAppli cati onAdni nMXBean on the platform MBeanSer ver. You could use this feature to
administer your Spring Boot application remotely. This feature could also be useful for any service
wrapper implementation.

Tip

If you want to know on which HTTP port the application is running, get the property with a key
ofl ocal . server. port.

Caution

Take care when enabling this feature, as the MBean exposes a method to shutdown the
application.

2.1.0.BUILD-SNAPSHOT Spring Boot 59

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/admin/SpringApplicationAdminMXBean.java

Spring Boot Reference Guide

24. Externalized Configuration

Spring Boot lets you externalize your configuration so that you can work with the same application
code in different environments. You can use properties files, YAML files, environment variables, and
command-line arguments to externalize configuration. Property values can be injected directly into your
beans by using the @/al ue annotation, accessed through Spring’s Envi r onnent abstraction, or be
bound to structured objects through @onf i gur ati onProperti es.

Spring Boot uses a very particular Pr oper t ySour ce order that is designed to allow sensible overriding
of values. Properties are considered in the following order:

1. Devtools global settings properties on your home directory (~/.spring-boot-
devt ool s. properti es when devtools is active).

2. @est PropertySour ce annotations on your tests.

3. properti es attribute on your tests. Available on @pr i ngBoot Test and the test annotations for
testing a particular slice of your application.

4. Command line arguments.

5. Properties from SPRI NG_APPLI CATI ON_JSON (inline JISON embedded in an environment variable
or system property).

6. Ser vl et Conf i g init parameters.

7. Ser vl et Cont ext init parameters.

8. JNDI attributes from j ava: conp/ env.

9. Java System properties (Syst em get Properti es()).
100S environment variables.

11A RandonVal uePr opert ySour ce that has properties only in r andom *.

12 Profile-specific _application properties outside of your packaged jar (application-
{profile}.properties and YAML variants).

13Profile-specific _application properties packaged inside your jar (application-
{profile}.properties and YAML variants).

14 Application properties outside of your packaged jar (appli cation. properties and YAML
variants).

15Application properties packaged inside your jar (appl i cati on. properti es and YAML variants).

16@Pr oper t ySour ce annotations on your @onfi gur at i on classes.

17Default properties (specified by setting Spri ngAppl i cati on. set Def aul t Properti es).

To provide a concrete example, suppose you develop a @onponent that uses a name property, as
shown in the following example:

i nport org.springfranework. stereotype. *;
i nport org.springfranework. beans. factory. annotati on. *;

2.1.0.BUILD-SNAPSHOT Spring Boot 60

https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/test/context/TestPropertySource.html
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/test/context/SpringBootTest.html
https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

Spring Boot Reference Guide

@onponent
public class MyBean {

@/al ue(" ${nane}")
private String nane;

...

}

On vyour application classpath (for example, inside your jar) you can have an
application. properties file that provides a sensible default property value for name. When
running in a new environment, an appl i cati on. properti es file can be provided outside of your jar
that overrides the nane. For one-off testing, you can launch with a specific command line switch (for
example, java -jar app.jar --nane="Spring").

Tip

The SPRI NG_APPLI CATI ON_JSON properties can be supplied on the command line with an
environment variable. For example, you could use the following line in a UN*X shell:

$ SPRI NG_APPLI CATI ON_JSON=' {"acne": {"nane":"test"}}' java -jar nyapp.jar

In the preceding example, you end up with acre. nane=t est in the Spring Envi r onnent . You
can also supply the JSON as spri ng. appl i cati on. j son in a System property, as shown in
the following example:

‘ $ java -Dspring. application.json="{"name":"test"}' -jar nyapp.jar

You can also supply the JSON by using a command line argument, as shown in the following
example:

‘ $ java -jar nyapp.jar --spring.application.json="{"nanme":"test"}"

You can also supply the JSON as a JNDI variable, as follows: java: conp/env/
spring. application.json.

24.1 Configuring Random Values

The RandonVal uePr oper t ySour ce is useful for injecting random values (for example, into secrets
or test cases). It can produce integers, longs, uuids, or strings, as shown in the following example:

. secret =${random val ue}

. nunber =${random i nt }

. bi gnunber =${random | ong}

. uui d=${r andom uui d}

.nunber. | ess. than. ten=${random i nt (10)}
nunber . i n. range=${random i nt [1024, 65536] }

233333

Therandom i nt * syntax is OPEN val ue (, max) CLOSE where the OPEN, CLOSE are any character
and val ue, max are integers. If nax is provided, then val ue is the minimum value and max is the
maximum value (exclusive).

24.2 Accessing Command Line Properties

By default, Spri ngAppl i cat i on converts any command line option arguments (that is, arguments
starting with - -, such as --server. port=9000) to a property and adds them to the Spring

2.1.0.BUILD-SNAPSHOT Spring Boot 61

Spring Boot Reference Guide

Envi r onnent . As mentioned previously, command line properties always take precedence over other
property sources.

If you do not want command line properties to be added to the Envi r onnent , you can disable them
by using Spri ngAppl i cati on. set AddCommandLi neProperti es(fal se).

24.3 Application Property Files

SpringAppl i cation loads properties from appli cati on. properties files in the following
locations and adds them to the Spring Envi r onnent :

1. A/ confi g subdirectory of the current directory
2. The current directory

3. Aclasspath / conf i g package

4. The classpath root

The list is ordered by precedence (properties defined in locations higher in the list override those defined
in lower locations).

Note

You can also use YAML (.yml') files as an alternative to '.properties’.

If you do not like appl i cati on. properti es as the configuration file name, you can switch to another
file name by specifyingaspri ng. conf i g. name environment property. You can also refer to an explicit
location by using the spri ng. confi g. | ocat i on environment property (which is a comma-separated
list of directory locations or file paths). The following example shows how to specify a different file name:

‘ $ java -jar myproject.jar --spring.config.name=nyproj ect

The following example shows how to specify two locations:

$ java -jar nmyproject.jar --spring.config.location=classpath:/default.properties,classpath:/
override. properties

Warning

spring.config.nane and spring.config.location are used very early to determine
which files have to be loaded, so they must be defined as an environment property (typically an
OS environment variable, a system property, or a command-line argument).

If spring.config.location contains directories (as opposed to files), they should end in / (and,
at runtime, be appended with the names generated from spri ng. conf i g. nanme before being loaded,
including profile-specific file names). Files specified in spri ng. confi g. | ocati on are used as-is,
with no support for profile-specific variants, and are overridden by any profile-specific properties.

Config locations are searched in reverse order. By default, the configured locations are
cl asspat h:/,classpath:/config/,file:./,file:./config/.The resulting search order is
the following:

1.file:./config/

2. file:./

2.1.0.BUILD-SNAPSHOT Spring Boot 62

Spring Boot Reference Guide

3. classpath:/config/
4. cl asspat h:/

When custom config locations are configured by using spring.config.location, they
replace the default locations. For example, if spring. config. | ocation is configured with the
value cl asspat h: / customconfig/,file:./customconfig/, the search order becomes the
following:

1.file:./customconfig/
2. cl asspat h: cust om confi g/

Alternatively, when custom config locations are configured by using spri ng. confi g. addi ti onal -
| ocati on, they are used in addition to the default locations. Additional locations are searched
before the default locations. For example, if additional locations of cl asspath:/custom
config/,file:./custom config/ are configured, the search order becomes the following:

1.file:./customconfig/

2. cl asspat h: cust omt confi g/
3.file:./config/

4. file:./

5. cl asspat h: / confi g/

6. cl asspath:/

This search ordering lets you specify default values in one configuration file and then selectively
override those values in another. You can provide default values for your application in
appl i cation. properti es (or whatever other basename you choose with spri ng. confi g. nane)
in one of the default locations. These default values can then be overridden at runtime with a different
file located in one of the custom locations.

Note

If you use environment variables rather than system properties, most operating systems
disallow period-separated key names, but you can use underscores instead (for example,
SPRI NG_CONFI G_NAME instead of spri ng. confi g. nane).

Note

If your application runs in a container, then JNDI properties (in j ava: conp/ env) or servlet
context initialization parameters can be used instead of, or as well as, environment variables or
system properties.

24.4 Profile-specific Properties

In addition to appl i cati on. properti es files, profile-specific properties can also be defined by using
the following naming convention: appl i cati on-{profil e}. properties. The Envi ronnent has
a set of default profiles (by default, [def aul t]) that are used if no active profiles are set. In other words,
if no profiles are explicitly activated, then properties from appl i cati on-defaul t. properti es are
loaded.

2.1.0.BUILD-SNAPSHOT Spring Boot 63

Spring Boot Reference Guide

Profile-specific ~ properties are loaded from the same Ilocations as standard
application. properties, with profile-specific files always overriding the non-specific ones,
whether or not the profile-specific files are inside or outside your packaged jar.

If several profiles are specified, a last-wins strategy applies. For example, profiles specified
by the spring.profiles.active property are added after those configured through the
Spri ngAppl i cati on API and therefore take precedence.

Note

If you have specified any files in spri ng. confi g. | ocat i on, profile-specific variants of those
files are not considered. Use directories in spri ng. confi g. | ocati on if you want to also use
profile-specific properties.

24.5 Placeholders in Properties

The values in appl i cati on. properti es are filtered through the existing Envi r onment when they
are used, so you can refer back to previously defined values (for example, from System properties).

app. name=M/App
app. descri ption=${app. nanme} is a Spring Boot application

Tip

You can also use this technique to create “short” variants of existing Spring Boot properties. See
the Section 76.4, “Use ‘Short’ Command Line Arguments” how-to for details.

24.6 Using YAML Instead of Properties

YAML is a superset of JSON and, as such, is a convenient format for specifying hierarchical configuration
data. The Spri ngAppl i cati on class automatically supports YAML as an alternative to properties
whenever you have the SnakeYAML library on your classpath.

Note

If you use “Starters”, SnakeYAML is automatically provided by spri ng- boot - starter.

Loading YAML

Spring Framework provides two convenient classes that can be used to load YAML documents. The
Yam Properti esFact or yBean loads YAML as Pr operti es and the Yam MapFact or yBean loads
YAML as a Map.

For example, consider the following YAML document:

environnents:
dev:
url: http://dev. exanpl e.com
nane: Devel oper Setup
prod:
url: http://another.exanpl e.com
nane: My Cool App

The preceding example would be transformed into the following properties:

2.1.0.BUILD-SNAPSHOT Spring Boot 64

http://yaml.org
http://www.snakeyaml.org/

Spring Boot Reference Guide

environnents. dev. url =http://dev. exanpl e. com

envi ronnent s. dev. nane=Devel oper Setup
environnents. prod. url =http://anot her. exanpl e. com
envi ronnment s. prod. nane=My Cool App

YAML lists are represented as property keys with [i ndex] dereferencers. For example, consider the
following YAML.:

ny:
servers:

- dev. exanpl e. com

- anot her. exanpl e. com

The preceding example would be transformed into these properties:

ny. server s[0] =dev. exanpl e. com
ny. server s[1] =anot her . exanpl e. com

To bind to properties like that by using Spring Boot's Bi nder utilities (which is what
@confi gurati onProperties does), you need to have a property in the target bean of type
java.util.List (or Set) and you either need to provide a setter or initialize it with a mutable value.
For example, the following example binds to the properties shown previously:

@onfigurationProperties(prefix="ny")
public class Config {

private List<String> servers = new ArrayList<String>();

public List<String> getServers() {
return this.servers;

}

}

Exposing YAML as Properties in the Spring Environment

The Yari Propert ySour ceLoader class can be used to expose YAML as a Propert ySource in
the Spring Envi r onnent . Doing so lets you use the @/al ue annotation with placeholders syntax to
access YAML properties.

Multi-profile YAML Documents

You can specify multiple profile-specific YAML documents in a single file by usingaspri ng. profil es
key to indicate when the document applies, as shown in the following example:

server:
address: 192.168.1.100

spring:

profiles: devel opment
server:

address: 127.0.0.1

spring:

profiles: production & eu-central
server:

address: 192.168.1.120

In the preceding example, if the devel oprment profile is active, the server. addr ess property is
127. 0. 0. 1. Similarly, if the pr oduct i on and eu- cent r al profiles are active, the ser ver . addr ess
property is 192. 168. 1. 120. If the devel opnent, producti on and eu- central profiles are not
enabled, then the value for the property is 192. 168. 1. 100.

2.1.0.BUILD-SNAPSHOT Spring Boot 65

Spring Boot Reference Guide

Note

spring. profil es can therefore contain a simple profile name (for example pr oduct i on) or a
profile expression. A profile expression allows for more complicated profile logic to be expressed,
for example production & (eu-central | eu-west).Check the reference guide for more
details.

If none are explicitly active when the application context starts, the default profiles are activated. So,
in the following YAML, we set a value for spri ng. security. user. passwor d that is available only
in the "default” profile:

server:
port: 8000

spring:
profiles: default
security:
user:
password: weak

Whereas, in the following example, the password is always set because it is not attached to any profile,
and it would have to be explicitly reset in all other profiles as necessary:

server:
port: 8000
spring:
security:
user:
password: weak

Spring profiles designated by using the spri ng. profil es element may optionally be negated by
using the ! character. If both negated and non-negated profiles are specified for a single document, at
least one non-negated profile must match, and no negated profiles may match.

YAML Shortcomings

YAML files cannot be loaded by using the @r oper t ySour ce annotation. So, in the case that you need
to load values that way, you need to use a properties file.

24.7 Type-safe Configuration Properties

Using the @/al ue(" ${ property}") annotation to inject configuration properties can sometimes be
cumbersome, especially if you are working with multiple properties or your data is hierarchical in nature.
Spring Boot provides an alternative method of working with properties that lets strongly typed beans
govern and validate the configuration of your application, as shown in the following example:

package com exanpl e;

i nport java.net.|net Address;
i nmport java.util.Arraylist;
inport java.util.Collections;
import java.util.List;

i nport org.springfranework. boot . cont ext. properties. ConfigurationProperti es;

@onfi gurationProperties("acne")
public class AcneProperties {

private bool ean enabl ed;

2.1.0.BUILD-SNAPSHOT Spring Boot 66

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/core.html#beans-definition-profiles-java

Spring Boot Reference Guide

private |net Address renoteAddress;

private final Security security = new Security();

public bool ean isEnabled() { ... }

public void set Enabl ed(bool ean enabled) { ... }

public | netAddress get RenoteAddress() { ... }

public void set Renpt eAddr ess(| net Address renpoteAddress) { ... }
public Security getSecurity() { ... }

public static class Security {
private String usernane;
private String password;

private List<String> roles = new ArrayLi st<>(Collections.singleton("USER"));

public String getUsernane() { ... }

public void setUsername(String usernane) { ... }
public String getPassword() { ... }

public void setPassword(String password) { ... }
public List<String> getRoles() { ... }

public void setRoles(List<String> roles) { ... }

The preceding POJO defines the following properties:
» acne. enabl ed, with a value of f al se by default.

* acne. r enot e- addr ess, with a type that can be coerced from St ri ng.

e acne. security. username, with a nested "security" object whose name is determined by the
name of the property. In particular, the return type is not used at all there and could have been

SecurityProperties.
e acne. security. password.

e acne. security.rol es, with a collection of St ri ng.

Note

Getters and setters are usually mandatory, since binding is through standard Java Beans property
descriptors, just like in Spring MVC. A setter may be omitted in the following cases:

» Maps, as long as they are initialized, need a getter but not necessarily a setter, since they can
be mutated by the binder.

» Collections and arrays can be accessed either through an index (typically with YAML) or by
using a single comma-separated value (properties). In the latter case, a setter is mandatory.
We recommend to always add a setter for such types. If you initialize a collection, make sure
it is not immutable (as in the preceding example).

2.1.0.BUILD-SNAPSHOT Spring Boot

67

Spring Boot Reference Guide

« If nested POJO properties are initialized (like the Secur i t y field in the preceding example), a
setter is not required. If you want the binder to create the instance on the fly by using its default
constructor, you need a setter.

Some people use Project Lombok to add getters and setters automatically. Make sure that Lombok
does not generate any particular constructor for such a type, as it is used automatically by the
container to instantiate the object.

Finally, only standard Java Bean properties are considered and binding on static properties is
not supported.

Tip

See also the differences between @/al ue and @onfi gurati onProperti es.

You also need to list the properties classes to register in the @nabl eConfi gurati onProperties
annotation, as shown in the following example:

@onfi guration

@nabl eConfi gurati onProperties(AcneProperties. class)
public class MyConfiguration {

}

Note

When the @Confi gurati onProperties bean is registered that way, the bean has a
conventional name: <pr ef i x>- <f gn>, where <pr ef i x> is the environment key prefix specified
in the @onfi gurati onProperties annotation and <f gn> is the fully qualified name of the
bean. If the annotation does not provide any prefix, only the fully qualified name of the bean is
used.

The bean name in the example above is acrme- com exanpl e. AcnePr operti es.

Even if the preceding configuration creates a regular bean for AcnePr operti es, we recommend
that @onfi gurati onProperties only deal with the environment and, in particular, does not
inject other beans from the context. Having said that, the @nabl eConfi gurati onProperties
annotation is also automatically applied to your project so that any existing bean annotated
with @Confi gurati onProperties is configured from the Environnment. You could shortcut
MyConf i gur ati on by making sure AcnePr operti es is already a bean, as shown in the following
example:

@onponent
@onfi gurationProperties(prefix="acne")
public class AcneProperties {

/Il ... see the preceding exanple

}

This style of configuration works particularly well with the Spri ngAppl i cati on external YAML
configuration, as shown in the following example:

application.ymn

acne:
renot e- address: 192.168.1.1
security:

2.1.0.BUILD-SNAPSHOT Spring Boot 68

Spring Boot Reference Guide

usernane: admn
rol es:

- USER

- ADM N

addi tional configuration as required

To work with @onf i gur at i onPr operti es beans, you can inject them in the same way as any other
bean, as shown in the following example:

@ervi ce
public class MyService {

private final AcmeProperties properties;

@\ut owi r ed
public MyService(AcneProperties properties) {
this.properties = properties;

}

e

@ost Const ruct

public void openConnection() {
Server server = new Server(this.properties.get RenoteAddress());
...

}

Tip

Using @Conf i gur ati onProperti es also lets you generate metadata files that can be used by
IDEs to offer auto-completion for your own keys. See the Appendix B, Configuration Metadata
appendix for details.

Third-party Configuration

As well as using @onfi gurati onProperti es to annotate a class, you can also use it on public
@ean methods. Doing so can be particularly useful when you want to bind properties to third-party
components that are outside of your control.

To configure a bean from the Envi r onnent properties, add @onfi gurati onProperties to its
bean registration, as shown in the following example:

@onfigurationProperties(prefix = "another")

@Bean
publ i ¢ Anot her Conponent anot her Conponent () {

}

Any property defined with the anot her prefix is mapped onto that Anot her Conponent bean in manner
similar to the preceding AcnePr operti es example.

Relaxed Binding

Spring Boot uses some relaxed rules for binding Environnment properties to
@Confi gurati onProperties beans, so there does not need to be an exact match between the
Envi ronnment property name and the bean property name. Common examples where this is useful
include dash-separated environment properties (for example, cont ext - pat h binds to cont ext Pat h),
and capitalized environment properties (for example, PORT binds to port).

2.1.0.BUILD-SNAPSHOT Spring Boot 69

Spring Boot Reference Guide

For example, consider the following @onf i gur ati onProperti es class:

}

}

@onfi gurationProperties(prefix="acne. ny-project.person")
public class OmnerProperties {

private String firstNane;
public String getFirstName() {

return this.firstNane;

public void setFirstName(String firstName) {
this.firstName = firstNane;

In the preceding example, the following properties names can all be used:

Table 24.1. relaxed binding

Property

acme. ny-

nanme

Note

Kebab case, which is recommended for use in . properties and . yml files.
project.person.first-

acne. nmyProj ect.

pearstand fcamst Mase syntax.

acne. nmy_pr oj ect Unelessmoré notetionambich is an alternative format for use in . properti es

and . ym files.

ACME_MYPRQOIECT_PipRSObase RisiTaMEhich is recommended when using system environment

variables.

Note

The pr ef i x value for the annotation must be in kebab case (lowercase and separated by -, such
as acne. my- proj ect. person).

Table 24.2. relaxed binding rules per property source

Property Source

Properties Files

Simple

Camel case, kebab case, or
underscore notation

List

Standard list syntax using [] or
comma-separated values

YAML Files

Environment
Variables

System properties

Camel case, kebab case, or
underscore notation

Upper case format with underscore
as the delimiter. _ should not be used
within a property name

Camel case, kebab case, or
underscore notation

Standard YAML list syntax or comma-
separated values

Numeric values surrounded
by underscores, such as
MY_ACME_1 OTHER =

nmy. acne[1] . ot her

Standard list syntax using [] or
comma-separated values

2.1.0.BUILD-SNAPSHOT

Spring Boot

70

Spring Boot Reference Guide

Tip

We recommend that, when possible, properties are stored in lower-case kebab format, such as
ny. property- name=acne.

When binding to Map properties, if the key contains anything other than lowercase alpha-numeric
characters or -, you need to use the bracket notation so that the original value is preserved. If the key
is not surrounded by [], any characters that are not alpha-numeric or - are removed. For example,
consider binding the following properties to a Map:

acme:
map:
"[/keyl] ": val uel
"[/key2]": val ue2
/ key3: val ue3

The properties above will bind to a Map with / key1, / key2 and key3 as the keys in the map.
Merging Complex Types
When lists are configured in more than one place, overriding works by replacing the entire list.

For example, assume a MyPoj o object with nane anddescr i pt i on attributes thatare nul | by default.
The following example exposes a list of MyPoj o objects from AcrrePr operti es:

@onfi gurationProperties("acnme")
public class AcneProperties {

private final List<M/Pojo> list = new ArrayList<>();
public List<MyPojo> getList() {

return this.list;

}

Consider the following configuration:

acne:
list:
- nane: my nane
description: ny description

spring:
profiles: dev
acne:
list:
- nane: ny another name

If the dev profile is not active, AcmePr operti es.|i st contains one M/Poj o entry, as previously
defined. If the dev profile is enabled, however, the | i st still contains only one entry (with a name of
ny anot her nane and a description of nul |). This configuration does not add a second MyPoj o
instance to the list, and it does not merge the items.

When a Li st is specified in multiple profiles, the one with the highest priority (and only that one) is
used. Consider the following example:

acne:
l'ist:
- name: ny nane

2.1.0.BUILD-SNAPSHOT Spring Boot 71

Spring Boot Reference Guide

description: ny description
- name: another name
description: another description

spring:
profiles: dev
acme:
list:
- name: ny another nane

In the preceding example, if the dev profile is active, AcnmePr operti es. | i st contains one MyPoj o
entry (with a name of my anot her nane and a description of nul |). For YAML, both comma-separated
lists and YAML lists can be used for completely overriding the contents of the list.

For Map properties, you can bind with property values drawn from multiple sources. However, for the
same property in multiple sources, the one with the highest priority is used. The following example
exposes a Map<String, MyPoj o> from AcneProperti es:

@onfi gurationProperties("acnme")
public class AcneProperties {

private final Map<String, MPojo> map = new HashMap<>();
public Map<String, MPojo> getMap() {

return this. map;

}

Consider the following configuration:

acne:
map:
key1l:
nane: ny name 1
description: ny description 1

spring:
profiles: dev
acne:
map:
keyl:
name: dev nane 1
key2:
name: dev nane 2
description: dev description 2

If the dev profile is not active, AcnePr oper ti es. map contains one entry with key key1 (with a name
of my name 1 and a description of my descri ption 1).If the dev profile is enabled, however, map
contains two entries with keys key1 (with a name of dev name 1 and a description of my descri ption
1) and key?2 (with a name of dev name 2 and a description of dev descri ption 2).

Note

The preceding merging rules apply to properties from all property sources and not just YAML files.

Properties Conversion

Spring Boot attempts to coerce the external application properties to the right type when it binds
to the @onfi gur ati onProperties beans. If you need custom type conversion, you can provide
a ConversionServi ce bean (with a bean named conversi onServi ce) or custom property

2.1.0.BUILD-SNAPSHOT Spring Boot 72

Spring Boot Reference Guide

editors (through a Cust onEdi t or Conf i gur er bean) or custom Convert er s (with bean definitions
annotated as @onfi gur ati onProperti esBi ndi ng).

Note

As this bean is requested very early during the application lifecycle, make sure to limit the
dependencies that your Conver si onSer vi ce is using. Typically, any dependency that you
require may not be fully initialized at creation time. You may want to rename your custom
Conver si onSer vi ce ifit is not required for configuration keys coercion and only rely on custom
converters qualified with @onf i gur ati onPr operti esBi ndi ng.

Converting durations

Spring Boot has dedicated support for expressing durations. If you expose a j ava. ti me. Durati on
property, the following formats in application properties are available:

« Aregular | ong representation (using milliseconds as the default unit unless a @ur ati onUni t has
been specified)

* The standard 1SO-8601 format used by j ava. uti |l . Durati on

« A more readable format where the value and the unit are coupled (e.g. 10s means 10 seconds)

Consider the following example:

@onfi gurationProperties("app.systeni)
public class AppSystenProperties {

@ur at i onUni t (ChronoUni t . SECONDS)
private Duration sessionTi neout = Duration. of Seconds(30);

private Duration readTi meout = Duration.of MI1is(1000);

public Duration getSessionTi meout () {
return this.sessionTinmeout;

}

public void set SessionTi meout (Duration sessionTi meout) {
t hi s. sessionTi neout = sessi onTi neout ;

}

public Duration getReadTi neout () {
return this.readTi neout;

}

public void setReadTi meout (Duration readTi meout) {
this.readTi meout = readTi nmeout;

}

To specify a session timeout of 30 seconds, 30, PT30S and 30s are all equivalent. A read timeout of
500ms can be specified in any of the following form: 500, PT0. 5S and 500nms.

You can also use any of the supported units. These are:
» ns for nanoseconds
 us for microseconds

» ns for milliseconds

2.1.0.BUILD-SNAPSHOT Spring Boot 73

https://docs.oracle.com/javase/8/docs/api//java/time/Duration.html#parse-java.lang.CharSequence-

Spring Boot Reference Guide

* s for seconds
* mfor minutes
* h for hours
 d for days

The default unit is milliseconds and can be overridden using @ur ati onUni t as illustrated in the
sample above.

Tip

If you are upgrading from a previous version that is simply using Long to express the duration,
make sure to define the unit (using @ur at i onUni t) if it isn’t milliseconds alongside the switch
to Dur at i on. Doing so gives a transparent upgrade path while supporting a much richer format.

Converting Data Sizes

Spring Framework has a Dat aSi ze value type that allows to express size in bytes. If you expose a
Dat aSi ze property, the following formats in application properties are available:

e Aregular | ong representation (using bytes as the default unit unless a @at aSi zeUni t has been
specified)

» A more readable format where the value and the unit are coupled (e.g. 10MB means 10 megabytes)

Consider the following example:

@onfi gurationProperties("app.io")
public class ApploProperties {

@at aSi zeUni t (Dat aUni t . MEGABYTES)
private DataSi ze bufferSize = DataSi ze. of Megabyt es(2);

private DataSi ze sizeThreshold = DataSi ze. of Byt es(512) ;

public DataSi ze getBufferSize() {
return this. bufferSize;

}

public void setBufferSize(DataSi ze bufferSize) {
this.bufferSize = bufferSize;

}

publ i c DataSi ze get Si zeThreshol d() {
return this.sizeThreshol d;

}

public void setSizeThreshol d(Dat aSi ze si zeThreshol d) {
this.sizeThreshold = sizeThreshol d;

}

To specify a buffer size of 10 megabytes, 10 and 10MB are equivalent. A size threshold of 256 bytes
can be specified as 256 or 256B.

You can also use any of the supported units. These are:

» Bfor bytes

2.1.0.BUILD-SNAPSHOT Spring Boot 74

Spring Boot Reference Guide

KB for kilobytes

» MB for megabytes

GB for gigabytes

TB for terabytes

The default unit is bytes and can be overridden using @at aSi zeUni t as illustrated in the sample
above.

Tip

If you are upgrading from a previous version that is simply using Long to express the size, make
sure to define the unit (using @at aSi zeUni t) if itisn’t bytes alongside the switch to Dat aSi ze.
Doing so gives a transparent upgrade path while supporting a much richer format.

@ConfigurationProperties Validation

Spring Boot attempts to validate @onf i gur ati onPr operti es classes whenever they are annotated
with Spring’'s @al i dat ed annotation. You can use JSR-303 j avax. val i dation constraint
annotations directly on your configuration class. To do so, ensure that a compliant JSR-303
implementation is on your classpath and then add constraint annotations to your fields, as shown in
the following example:

@onfi gurationProperties(prefix="acne")
@val i dat ed
public class AcneProperties {

@\ot Nul |
private |netAddress renoteAddress;

/Il ... getters and setters

Tip

You can also trigger validation by annotating the @ean method that creates the configuration
properties with @/al i dat ed.

Although nested properties will also be validated when bound, it's good practice to also annotate the
associated field as @/al i d. This ensure that validation is triggered even if no nested properties are
found. The following example builds on the preceding AcnePr operti es example:

@onfi gurationProperties(prefix="acne")
@val i dat ed
public class AcneProperties {

@Not Nul |
private |net Address renoteAddress;

@alid
private final Security security = new Security();

/Il ... getters and setters

public static class Security {

2.1.0.BUILD-SNAPSHOT Spring Boot 75

Spring Boot Reference Guide

@Not Enpt y
public String usernane;

/1 ... getters and setters

You can also add a custom Spring Validator by creating a bean definition called
configurationPropertiesValidator. The @ean method should be declared static. The
configuration properties validator is created very early in the application’s lifecycle, and declaring the
@Bean method as static lets the bean be created without having to instantiate the @onf i gurati on
class. Doing so avoids any problems that may be caused by early instantiation. There is a property
validation sample that shows how to set things up.

Tip

The spring-boot-actuator module includes an endpoint that exposes all
@confi gurati onProperti es beans. Point your web browser to / act uat or/ confi gpr ops
or use the equivalent JMX endpoint. See the "Production ready features" section for details.

@ConfigurationProperties vs. @Value

The @/al ue annotation is a core container feature, and it does not provide the same features as
type-safe configuration properties. The following table summarizes the features that are supported by
@confi gurati onProperties and @al ue:

Feature @confi gur ati onPr ope@alese
Relaxed binding Yes No
Meta-data support Yes No
SpEL evaluation No Yes

If you define a set of configuration keys for your own components, we recommend you group them in a
POJO annotated with @onf i gur ati onProperti es. You should also be aware that, since @/al ue
does not support relaxed binding, it is not a good candidate if you need to provide the value by using
environment variables.

Finally, while you can write a SpEL expression in @/al ue, such expressions are not processed from
application property files.

2.1.0.BUILD-SNAPSHOT Spring Boot 76

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-property-validation
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-property-validation

Spring Boot Reference Guide

25. Profiles

Spring Profiles provide a way to segregate parts of your application configuration and make it be
available only in certain environments. Any @onponent or @onf i gurati on can be marked with
@r of i | e to limit when it is loaded, as shown in the following example:

@onfiguration
@rofile("production")
public class ProductionConfiguration {

...

You can use a spring. profiles.active Environnent property to specify which profiles are
active. You can specify the property in any of the ways described earlier in this chapter. For example,
you could include it in your appl i cati on. pr operti es, as shown in the following example:

spring. profiles.active=dev, hsql db

You could also specify it on the command line by using the following switch: --
spring. profiles.active=dev, hsql db.

25.1 Adding Active Profiles

The spring. profiles.active property follows the same ordering rules as other properties:
The highest PropertySource wins. This means that you can specify active profiles in
appl i cation. properties and then replace them by using the command line switch.

Sometimes, it is useful to have profile-specific properties that add to the active profiles rather
than replace them. The spring. profil es.incl ude property can be used to unconditionally add
active profiles. The Spri ngAppl i cati on entry point also has a Java API for setting additional
profiles (that is, on top of those activated by the spring. profil es. acti ve property). See the
set Addi ti onal Profil es() method in SpringApplication.

For example, when an application with the following properties is run by using the switch, - -
spring. profiles.active=prod,the proddb and pr odny profiles are also activated:

ny.property: fronyamfile

spring.profiles: prod
spring. profiles.include:
- proddb
- prodng

Note

Remember that the spring. profil es property can be defined in a YAML document to
determine when this particular document is included in the configuration. See Section 76.7
“Change Configuration Depending on the Environment” for more details.

2.1.0.BUILD-SNAPSHOT Spring Boot 7

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/SpringApplication.html

Spring Boot Reference Guide

25.2 Programmatically Setting Profiles

You can programmatically set active profiles by calling
SpringApplication.set Additi onal Profil es(.) before your application runs. It is also
possible to activate profiles by using Spring’s Conf i gur abl eEnvi r onnent interface.

25.3 Profile-specific Configuration Files

Profile-specific variants of both application. properties (or application.ynl) and files
referenced through @Confi gurati onProperties are considered as files and loaded. See
"Section 24.4, “Profile-specific Properties™ for details.

2.1.0.BUILD-SNAPSHOT Spring Boot 78

Spring Boot Reference Guide

26. Logging

Spring Boot uses Commons Logging for all internal logging but leaves the underlying log implementation
open. Default configurations are provided for Java Util Logging, Log4J2, and Logback. In each case,
loggers are pre-configured to use console output with optional file output also available.

By default, if you use the “Starters”, Logback is used for logging. Appropriate Logback routing is also
included to ensure that dependent libraries that use Java Util Logging, Commons Logging, Log4J, or
SLF4J all work correctly.

Tip

There are a lot of logging frameworks available for Java. Do not worry if the above list seems
confusing. Generally, you do not need to change your logging dependencies and the Spring Boot
defaults work just fine.

26.1 Log Format

The default log output from Spring Boot resembles the following example:

2014-03-05 10:57:51. 112 | NFO 45469 --- [nmai n] org. apache. catal i na. cor e. St andar dEngi ne
Starting Servlet Engine: Apache Tontat/7.0.52

2014-03-05 10:57:51.253 | NFO 45469 --- [ost-startStop-1] o.a.c.c.C.[Tontat].[local host].[/]
Initializing Spring enbedded WebAppl i cati onCont ext

2014-03-05 10:57:51. 253 | NFO 45469 --- [ost-startStop-1] o.s.web. context. ContextLoader
Root WebApplicationContext: initialization conpleted in 1358 ns

2014-03-05 10:57:51.698 | NFO 45469 --- [ost-startStop-1] o.s.b.c.e. ServletRegistrati onBean
Mappi ng servlet: 'dispatcherServliet' to [/]

2014-03-05 10:57:51.702 |NFO 45469 --- [ost-startStop-1] o.s.b.c.enbedded. FilterRegi strati onBean
Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

The following items are output:
» Date and Time: Millisecond precision and easily sortable.

» Log Level: ERROR, WARN, | NFO, DEBUG, or TRACE.

Process ID.

» A--- separator to distinguish the start of actual log messages.

» Thread name: Enclosed in square brackets (may be truncated for console output).
» Logger name: This is usually the source class name (often abbreviated).

e The log message.

Note

Logback does not have a FATAL level. It is mapped to ERROR.

26.2 Console Output

The default log configuration echoes messages to the console as they are written. By default, ERROR-
level, WARN-level, and | NFO-level messages are logged. You can also enable a “debug” mode by starting
your application with a - - debug flag.

2.1.0.BUILD-SNAPSHOT Spring Boot 79

http://commons.apache.org/logging
https://docs.oracle.com/javase/8/docs/api//java/util/logging/package-summary.html
http://logging.apache.org/log4j/2.x/
http://logback.qos.ch/

Spring Boot Reference Guide

$ java -jar nyapp.jar --debug

Note

You can also specify debug=t r ue in your appl i cati on. properties.

When the debug mode is enabled, a selection of core loggers (embedded container, Hibernate, and
Spring Boot) are configured to output more information. Enabling the debug mode does not configure
your application to log all messages with DEBUG level.

Alternatively, you can enable a “trace” mode by starting your application with a --trace flag (or
trace=true inyour appl i cation. properti es). Doing so enables trace logging for a selection of
core loggers (embedded container, Hibernate schema generation, and the whole Spring portfolio).

Color-coded Output

If your terminal supports ANSI, color output is used to aid readability. You can set
spring. out put. ansi . enabl ed to a supported value to override the auto detection.

Color coding is configured by using the %! r conversion word. In its simplest form, the converter colors
the output according to the log level, as shown in the following example:

%! r (%p)

The following table describes the mapping of log levels to colors:

Level Color
FATAL Red
ERROR Red
WARN Yellow
I NFO Green
DEBUG Green
TRACE Green

Alternatively, you can specify the color or style that should be used by providing it as an option to the
conversion. For example, to make the text yellow, use the following setting:

%! r (%{yyyy- Mt dd HH nm ss. SSS}) {yel | ow}

The following colors and styles are supported:
* bl ue

e cyan

« faint

e green

« magent a

2.1.0.BUILD-SNAPSHOT Spring Boot 80

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/ansi/AnsiOutput.Enabled.html

Spring Boot Reference Guide

 red

* yell ow

26.3 File Output

By default, Spring Boot logs only to the console and does not write log files. If you want to write log files
in addition to the console output, you need to set a | oggi ng. fil e or | oggi ng. pat h property (for
example, in your appl i cati on. properti es).

The following table shows how the | oggi ng. * properties can be used together:
Table 26.1. Logging properties

| oggi ng. fi|leoggi ng. pat Bxample Description

(none) (none) Console only logging.

Specific file | (none) ny. | og Writes to the specified log file. Names can be an exact
location or relative to the current directory.

(none) Specific /var/log | Writes spring. | og to the specified directory. Names
directory can be an exact location or relative to the current
directory.

Log files rotate when they reach 10 MB and, as with console output, ERROR-level, WARN-level, and | NFO-
level messages are logged by default. Size limits can be changed using the | oggi ng. fi |l e. max- si ze
property. Previously rotated files are archived indefinitely unless the | oggi ng. fi |l e. max- hi story
property has been set.

Note

The logging system is initialized early in the application lifecycle. Consequently, logging properties
are not found in property files loaded through @°r oper t ySour ce annotations.

Tip

Logging properties are independent of the actual logging infrastructure. As a result, specific
configuration keys (such as | ogback. confi gur at i onFi | e for Logback) are not managed by
spring Boot.

26.4 Log Levels

All the supported logging systems can have the logger levels set in the Spring Envi r onnent (for
example, in application. properties) by using | oggi ng. | evel . <l ogger - name>=<| evel >
where | evel is one of TRACE, DEBUG, INFO, WARN, ERROR, FATAL, or OFF. Ther oot logger can
be configured by using | oggi ng. | evel . r oot .

The following example shows potential logging settings in appl i cati on. properti es:

| oggi ng. | evel . r oot =WARN
| oggi ng. | evel . org. spri ngf ramewor k. web=DEBUG
| oggi ng. | evel . or g. hi ber nat e=ERROR

2.1.0.BUILD-SNAPSHOT Spring Boot 81

Spring Boot Reference Guide

26.5 Log Groups

It's often useful to be able to group related loggers together so that they can all be configured at the
same time. For example, you might commonly change the logging levels for all Tomcat related loggers,
but you can’t easily remember top level packages.

To help with this, Spring Boot allows you to define logging groups in your Spring
Envi ronnent . For example, here’s how you could define a “tomcat” group by adding it to your
application. properties:

| oggi ng. group. t ontat =or g. apache. catal i na, org.apache. coyote, org.apache.tontat

Once defined, you can change the level for all the loggers in the group with a single line:

| oggi ng. | evel . t ontat =TRACE

Spring Boot includes the following pre-defined logging groups that can be used out-of-the-box:

Name Loggers

web org. springframework. core. codec, org. spri ngframework. http,
or g. spri ngframewor k. web

sql org. springframework. j dbc. core, org. hi bernate. SQU

26.6 Custom Log Configuration

The various logging systems can be activated by including the appropriate libraries on the classpath
and can be further customized by providing a suitable configuration file in the root of the classpath or in
a location specified by the following Spring Envi r onnent property: | oggi ng. confi g.

You can force Spring Boot to wuse a particular logging system by wusing the
org. spri ngfranmewor k. boot . | oggi ng. Loggi ngSyst emsystem property. The value should be
the fully qualified class name of a Loggi ngSyst emimplementation. You can also disable Spring Boot's
logging configuration entirely by using a value of none.

Note

Since logging is initialized before the Appl i cati onCont ext is created, it is not possible to
control logging from @r opert ySour ces in Spring @onf i gur ati on files. The only way to
change the logging system or disable it entirely is via System properties.

Depending on your logging system, the following files are loaded:

Logging System Customization

Logback | ogback-spring. xm , | ogback-
spring. groovy, | ogback. xnl , or
| ogback. gr oovy

Log4j2 | 0g4j 2-spring. xm orl og4j 2. xm

JDK (Java Util Logging) | oggi ng. properties

2.1.0.BUILD-SNAPSHOT Spring Boot 82

Spring Boot Reference Guide

Note

Warning

if at all possible.

(for example, | ogback-spring. xn
configuration locations, Spring cannot completely control log initialization.

When possible, we recommend that you use the - spri ng variants for your logging configuration
rather than | ogback.xm). If you use standard

There are known classloading issues with Java Util Logging that cause problems when running
from an 'executable jar'. We recommend that you avoid it when running from an 'executable jar'

To help with the customization, some other properties are transferred from the Spring Envi r onnent
to System properties, as described in the following table:

Spring Environment

| oggi ng. excepti on-
conver si on- wor d

System Property

Comments

LOG_EXCEPTI ON_CONVERSI ON_WR[@onversion word used

when logging exceptions.

| ogging.file

| oggi ng. fil e. max-size

| oggi ng. file. max-
hi story

| oggi ng. pat h

LOG FI LE

LOG_FI LE_MAX_SI ZE

LOG_FI LE_MAX_HI STORY

LOG_PATH

If defined, it is used in the
default log configuration.

Maximum log file size (if
LOG_FILE enabled). (Only
supported with the default
Logback setup.)

Maximum number of archive
log files to keep (if LOG_FILE
enabled). (Only supported with
the default Logback setup.)

If defined, it is used in the
default log configuration.

| oggi ng. pattern. consol e

CONSOLE_LOG_PATTERN

The log pattern to use on
the console (stdout). (Only
supported with the default
Logback setup.)

| oggi ng. pattern. datef orm

| oggi ng. pattern.file

| oggi ng. pattern. | evel

at OG_DATEFORMAT_PATTERN

FI LE_LOG _PATTERN

LOG_LEVEL_PATTERN

Appender pattern for log date
format. (Only supported with the
default Logback setup.)

The log pattern to use in a

file (if LOG_FI LE is enabled).
(Only supported with the default
Logback setup.)

The format to use when
rendering the log level (default
%5p). (Only supported with the
default Logback setup.)

2.1.0.BUILD-SNAPSHOT

Spring Boot

83

Spring Boot Reference Guide

Spring Environment System Property Comments

PI D PI D The current process 1D
(discovered if possible and
when not already defined as an
OS environment variable).

All the supported logging systems can consult System properties when parsing their configuration files.
See the default configurations in spri ng- boot . j ar for examples:

» Logback
e Log4j2

» Java Util logging

Tip

If you want to use a placeholder in a logging property, you should use Spring Boot's syntax and
not the syntax of the underlying framework. Notably, if you use Logback, you should use : as the
delimiter between a property name and its default value and not use : - .

Tip

You can add MDC and other ad-hoc content to log lines by overriding only the
LOG _LEVEL_PATTERN (or | oggi ng. pattern. | evel with Logback). For example, if you use
| oggi ng. pattern. | evel =user: %{user} 9%bp, then the default log format contains an
MDC entry for "user", if it exists, as shown in the following example.

2015- 09-30 12: 30: 04. 031 user:soneone | NFO 22174 --- [ni o-8080-exec-0] denpo. Controller
Handl i ng aut henti cated request

26.7 Logback Extensions

Spring Boot includes a number of extensions to Logback that can help with advanced configuration.
You can use these extensions in your | ogback- spri ng. xm configuration file.

Note

Because the standard | ogback. xm configuration file is loaded too early, you cannot use
extensions in it. You need to either use | ogback- spri ng. xm or define al oggi ng. confi g

property.

Warning

The extensions cannot be used with Logback’s configuration scanning. If you attempt to do so,
making changes to the configuration file results in an error similar to one of the following being
logged:

ERROR i n ch. qos. | ogback. core.joran.spi.Interpreter@: 71 - no applicable action for [springProperty],
current ElementPath is [[configuration][springProperty]]

ERROR i n ch. qos. | ogback. core.joran.spi.Interpreter@:71 - no applicable action for [springProfile],
current ElementPath is [[configuration][springProfile]]

2.1.0.BUILD-SNAPSHOT Spring Boot 84

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/logback/defaults.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/log4j2/log4j2.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/java/logging-file.properties
http://logback.qos.ch/manual/configuration.html#autoScan

Spring Boot Reference Guide

Profile-specific Configuration

The <spri ngProf i | e>taglets you optionally include or exclude sections of configuration based on the
active Spring profiles. Profile sections are supported anywhere within the <conf i gur at i on> element.
Use the nane attribute to specify which profile accepts the configuration. The <spri ngPr of i | e> tag
can contain a simple profile name (for example st agi ng) or a profile expression. A profile expression
allows for more complicated profile logic to be expressed, for example pr oducti on & (eu-central

| eu-west). Check the reference guide for more details. The following listing shows three sample
profiles:

<springProfile name="stagi ng">
<I-- configuration to be enabl ed when the "staging" profile is active -->
</springProfil e>

<springProfile name="dev | staging">
<l-- configuration to be enabl ed when the "dev" or "staging" profiles are active -->
</ springProfile>

<springProfile name="!production">
<l-- configuration to be enabl ed when the "production"” profile is not active -->
</springProfile>

Environment Properties

The <spri ngPropert y> tag lets you expose properties from the Spring Envi r onnment for use within
Logback. Doing so can be useful if you want to access values from your appl i cati on. properties
file in your Logback configuration. The tag works in a similar way to Logback’s standard <pr opert y>
tag. However, rather than specifying a direct val ue, you specify the sour ce of the property (from the
Envi ronnent). If you need to store the property somewhere other than in | ocal scope, you can use
the scope attribute. If you need a fallback value (in case the property is not set in the Envi r onnment),
you can use the def aul t Val ue attribute. The following example shows how to expose properties for
use within Logback:

<springProperty scope="context" nanme="fluentHost" source="nyapp.fluentd. host"
def aul t Val ue="1 ocal host"/ >
<appender name="FLUENT" cl ass="ch. qos. | ogback. nor e. appenders. Dat aFl uent Appender" >
<r enot eHost >${ f | uent Host } </ r enot eHost >

</ appender >
Note

The source must be specified in kebab case (such as ny. property-nane). However,
properties can be added to the Envi r onnent by using the relaxed rules.

2.1.0.BUILD-SNAPSHOT Spring Boot 85

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/core.html#beans-definition-profiles-java

Spring Boot Reference Guide

27. Developing Web Applications

Spring Boot is well suited for web application development. You can create a self-contained HTTP
server by using embedded Tomcat, Jetty, Undertow, or Netty. Most web applications use the spri ng-
boot - st art er - web module to get up and running quickly. You can also choose to build reactive web
applications by using the spri ng- boot - st art er - webf | ux module.

If you have not yet developed a Spring Boot web application, you can follow the "Hello World!" example
in the Getting started section.

27.1 The “Spring Web MVC Framework”

The Spring Web MVC framework (often referred to as simply “Spring MVC”) is a rich “model view
controller” web framework. Spring MVC lets you create special @ont rol | er or @Rest Control | er
beans to handle incoming HTTP requests. Methods in your controller are mapped to HTTP by using
@Request Mappi ng annotations.

The following code shows a typical @est Cont r ol | er that serves JSON data:

@Rest Control | er
@Request Mappi ng(val ue="/users")
public class MyRestController {

@Request Mappi ng(val ue="/{user}", nethod=Request Met hod. GET)
public User getUser(@athVariable Long user) {

1o
}

@Request Mappi ng(val ue="/{user}/custoners", nethod=Request Met hod. GET)
Li st <Cust omer > get User Cust oner s(@at hVari abl e Long user) {
...

}

@Request Mappi ng(val ue="/{user}", net hod=Request Met hod. DELETE)
public User del eteUser(@athVariable Long user) {
...

}
}

Spring MVC is part of the core Spring Framework, and detailed information is available in the reference
documentation. There are also several guides that cover Spring MVC available at spring.io/guides.

Spring MVC Auto-configuration

Spring Boot provides auto-configuration for Spring MVC that works well with most applications.

The auto-configuration adds the following features on top of Spring’s defaults:

Inclusion of Cont ent Negot i at i ngVi ewResol ver and BeanNaneVi ewResol ver beans.

Support for serving static resources, including support for WebJars (covered later in this document)).

» Automatic registration of Convert er, Generi cConverter, and For matt er beans.

Support for Ht t pMessageConvert er s (covered later in this document).

» Automatic registration of MessageCodesResol ver (covered later in this document).

2.1.0.BUILD-SNAPSHOT Spring Boot 86

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#mvc
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#mvc
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#mvc
https://spring.io/guides

Spring Boot Reference Guide

» Statici ndex. ht m support.

» Custom Favi con support (covered later in this document).

* Automatic use of a Confi gurabl eWebBi ndi nglnitializer bean (covered later in this
document).

If you want to keep Spring Boot MVC features and you want to add additional MVC configuration
(interceptors, formatters, view controllers, and other features), you can add your own @onf i gur ati on
class of type WebMvcConfi gurer but without @Enabl eWwebMic. If you wish to provide
custom instances of Request Mappi ngHandl er Mappi ng, Request Mappi ngHandl er Adapt er, or
Except i onHandl er Except i onResol ver, you can declare a WebM/cRegi st rati onsAdapt er
instance to provide such components.

If you want to take complete control of Spring MVC, you can add your own @Conf i gur at i on annotated
with @nabl eWebMrc.

HttpMessageConverters

Spring MVC uses the Ht t pMessageConvert er interface to convert HTTP requests and responses.
Sensible defaults are included out of the box. For example, objects can be automatically converted to
JSON (by using the Jackson library) or XML (by using the Jackson XML extension, if available, or by
using JAXB if the Jackson XML extension is not available). By default, strings are encoded in UTF- 8.

If you need to add or customize converters, you can use Spring Boot's Ht t pMessageConverters
class, as shown in the following listing:

i mport org.springframework. boot . aut oconfi gure. web. H t pMessageConverters;
i nport org.springframework. context.annotation.*;
i nport org.springframework. http.converter.*;

@configuration
public class MyConfiguration {

@Bean
public HttpMessageConverters custonConverters() {
Ht t pMessageConverter<?> additional = ...
Ht t pMessageConverter<?> another = ...
return new Htt pMessageConverters(additional, another);

}

}

Any Ht t pMessageConvert er bean that is present in the context is added to the list of converters.
You can also override default converters in the same way.

Custom JSON Serializers and Deserializers

If you use Jackson to serialize and deserialize JSON data, you might want to write your own
JsonSeri al i zer and JsonDeseri al i zer classes. Custom serializers are usually registered with
Jackson through a module, but Spring Boot provides an alternative @ sonConponent annotation that
makes it easier to directly register Spring Beans.

You can use the @sonConponent annotation directly on JsonSeri al i zer orJsonDeseri al i zer
implementations. You can also use it on classes that contain serializers/deserializers as inner classes,
as shown in the following example:

2.1.0.BUILD-SNAPSHOT Spring Boot 87

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#mvc
https://github.com/FasterXML/jackson-docs/wiki/JacksonHowToCustomSerializers
https://github.com/FasterXML/jackson-docs/wiki/JacksonHowToCustomSerializers

Spring Boot Reference Guide

inport java.io.*;

i nport com fasterxnl.jackson.core.*;

i nport com fasterxnl.jackson. databi nd. *;

i nport org.springfranework. boot . jackson. *;

@sonConponent
public class Exanple {

public static class Serializer extends JsonSerializer<SoneObject> {
/...

}

public static class Deserializer extends JsonDeserializer<SoneCbject> {
1.

}

All @sonConponent beans in the Appl i cat i onCont ext are automatically registered with Jackson.
Because @sonComnponent is meta-annotated with @Conponent , the usual component-scanning rules

apply.

Spring Boot also provides JsonObj ect Seri al i zer and JsonQbj ect Deseri al i zer base classes
that provide useful alternatives to the standard Jackson versions when serializing objects. See
JsonOhj ect Seri alizer and JsonObj ect Deseri al i zer in the Javadoc for details.

MessageCodesResolver

Spring MVC has a strategy for generating error codes for rendering error messages from binding errors:
MessageCodesResol ver. If you set the spring. mvc. nessage- codes-resol ver. f or nat
property PREFI X _ERROR_CODE or POSTFI X_ERROR_CODE, Spring Boot creates one for you (see the
enumeration in Def aul t MessageCodesResol ver. For nat).

Static Content

By default, Spring Boot serves static content from a directory called / static (or / public or/
resour ces or / META- | NF/ r esour ces) in the classpath or from the root of the Ser vl et Cont ext .
It uses the Resour ceHt t pRequest Handl er from Spring MVC so that you can modify that behavior
by adding your own WebMvcConf i gur er and overriding the addResour ceHandl er s method.

In a stand-alone web application, the default servlet from the container is also enabled and acts as a
fallback, serving content from the root of the Ser vl et Cont ext if Spring decides not to handle it. Most
of the time, this does not happen (unless you modify the default MVC configuration), because Spring
can always handle requests through the Di spat cher Ser vl et .

By default, resources are mapped on / **, but you can tune that with the spri ng. nvc. stati c-
pat h- pat t er n property. For instance, relocating all resources to / r esour ces/ ** can be achieved
as follows:

spring. mvc. static-path-pattern=/resources/**

You can also customize the static resource locations by using the spring. resources. stati c-
| ocat i ons property (replacing the default values with a list of directory locations). The root Servlet
context path, "/ ", is automatically added as a location as well.

In addition to the “standard” static resource locations mentioned earlier, a special case is made for
Webjars content. Any resources with a path in / webj ar s/ ** are served from jar files if they are
packaged in the Webjars format.

2.1.0.BUILD-SNAPSHOT Spring Boot 88

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectSerializer.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectDeserializer.java
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/jackson/JsonObjectSerializer.html
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/jackson/JsonObjectDeserializer.html
https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.Format.html
https://www.webjars.org/

Spring Boot Reference Guide

Tip

Do not use the sr ¢/ mai n/ webapp directory if your application is packaged as a jar. Although
this directory is a common standard, it works only with war packaging, and it is silently ignored
by most build tools if you generate a jar.

Spring Boot also supports the advanced resource handling features provided by Spring MVC, allowing
use cases such as cache-busting static resources or using version agnostic URLs for Webjars.

To use version agnostic URLs for Webjars, add the webj ar s- | ocat or - cor e dependency. Then
declare your Webjar. Using jQuery as an example, adding "/ webj ars/j query/j query. mn.js"
results in "/ webj ars/j query/ x.y. z/jquery.nn.js".wherex.y. z is the Webjar version.

Note

If you use JBoss, you need to declare the webj ar s- | ocat or - j boss- vf s dependency instead
of the webj ar s- 1 ocat or - cor e. Otherwise, all Webjars resolve as a 404.

To use cache busting, the following configuration configures a cache busting solution for
all static resources, effectively adding a content hash, such as <link href="/css/
spri ng- 2a2d595e6ed9a0b24f 027f 2b63b134d6. css"/ >, in URLs:

spring. resources. chain. strategy. content. enabl ed=true
spring. resources. chain. strategy. content. pat hs=/**

Note

Links to resources are rewritten in templates at runtime, thanks to a
Resour ceUr | Encodi ngFi | t er that is auto-configured for Thymeleaf and FreeMarker. You
should manually declare this filter when using JSPs. Other template engines are currently not
automatically supported but can be with custom template macros/helpers and the use of the
Resour ceUr | Provi der .

When loading resources dynamically with, for example, a JavaScript module loader, renaming files is not
an option. That is why other strategies are also supported and can be combined. A "fixed" strategy adds
a static version string in the URL without changing the file name, as shown in the following example:

spring. resources. chai n. strategy. cont ent. enabl ed=t rue
spring. resources. chain. strategy. content. pat hs=/**
spring. resources. chai n. strategy. fixed. enabl ed=true
spring. resources. chain.strategy.fixed. paths=/js/lib/
spring. resources. chain. strategy. fixed. versi on=v12

With this configuration, JavaScript modules located under "/ j s/ | i b/ " use a fixed versioning strategy
("/v12/js/lib/mynodul e.js"), while other resources still use the content one (<l i nk href ="/
css/ spring-2a2d595e6ed9a0b24f 027f 2b63b134d6. css"/ >).

See Resour ceProperti es for more supported options.

Tip

This feature has been thoroughly described in a dedicated blog post and in Spring Framework’s
reference documentation.

2.1.0.BUILD-SNAPSHOT Spring Boot 89

https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceUrlProvider.html
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ResourceProperties.java
https://spring.io/blog/2014/07/24/spring-framework-4-1-handling-static-web-resources
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#mvc-config-static-resources

Spring Boot Reference Guide

Welcome Page

Spring Boot supports both static and templated welcome pages. It first looks for an i ndex. ht mi file in
the configured static content locations. If one is not found, it then looks for an i ndex template. If either
is found, it is automatically used as the welcome page of the application.

Custom Favicon

Spring Boot looks for a f avi con. i co in the configured static content locations and the root of the
classpath (in that order). If such afile is present, it is automatically used as the favicon of the application.

Path Matching and Content Negotiation

Spring MVC can map incoming HTTP requests to handlers by looking at the request path and matching
it to the mappings defined in your application (for example, @3t Mappi ng annotations on Controller
methods).

Spring Boot chooses to disable suffix pattern matching by default, which means that requests
like " GET /projects/spring-boot.json" won't be matched to @set Mappi ng("/ proj ects/
spring-boot") mappings. This is considered as a best practice for Spring MVC applications. This
feature was mainly useful in the past for HTTP clients which did not send proper "Accept" request
headers; we needed to make sure to send the correct Content Type to the client. Nowadays, Content
Negotiation is much more reliable.

There are other ways to deal with HTTP clients that don’t consistently send proper "Accept" request
headers. Instead of using suffix matching, we can use a query parameter to ensure that requests like
"GET / proj ect s/ spring-boot ?f or mat =j son" will be mapped to @zet Mappi ng("/ proj ect s/
spring-boot"):

spring. nvc. cont ent negoti ati on. f avor - par anet er =t r ue

We can change the paraneter nane, which is "format" by defaul t:
spring. nvc. cont ent negoti ati on. par anet er - nanme=nypar am

We can also register additional file extensions/media types wth:
spring. nvc. cont ent negoti ati on. nedi a-t ypes. mar kdown=t ext / mar kdown

If you understand the caveats and would still like your application to use suffix pattern matching, the
following configuration is required:

spring. nvc. cont ent negoti ati on. f avor - pat h- ext ensi on=true

You can also restrict that feature to known extensions only
spring. nvc. pat hnat ch. use-regi st ered-suffi x-pattern=true

We can al so register additional file extensions/nedia types wth:
spring.nvc. cont ent negoti ati on. nedi a-t ypes. adoc=t ext/ asci i doc

ConfigurableWebBindinglnitializer

Spring MVC uses a WebBi ndi ngl ni ti al i zer toinitialize a WebDat aBi nder for a particular request.
If you create your own Conf i gur abl eWebBi ndi ngl niti ali zer @ean, Spring Boot automatically
configures Spring MVC to use it.

2.1.0.BUILD-SNAPSHOT Spring Boot 90

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#mvc-ann-requestmapping-suffix-pattern-match

Spring Boot Reference Guide

Template Engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content. Spring
MVC supports a variety of templating technologies, including Thymeleaf, FreeMarker, and JSPs. Also,
many other templating engines include their own Spring MVC integrations.

Spring Boot includes auto-configuration support for the following templating engines:
» FreeMarker

 Groovy

* Thymeleaf

* Mustache

Tip

If possible, JSPs should be avoided. There are several known limitations when using them with
embedded servlet containers.

When you use one of these templating engines with the default configuration, your templates are picked
up automatically from sr c/ mai n/ r esour ces/t enpl at es.

Tip

Depending on how you run your application, IntelliJ IDEA orders the classpath differently. Running
your application in the IDE from its main method results in a different ordering than when you
run your application by using Maven or Gradle or from its packaged jar. This can cause Spring
Boot to fail to find the templates on the classpath. If you have this problem, you can reorder the
classpath in the IDE to place the module’s classes and resources first. Alternatively, you can
configure the template prefix to search every t enpl at es directory on the classpath, as follows:
cl asspat h*:/tenpl ates/.

Error Handling

By default, Spring Boot provides an / err or mapping that handles all errors in a sensible way, and
it is registered as a “global” error page in the servlet container. For machine clients, it produces a
JSON response with details of the error, the HTTP status, and the exception message. For browser
clients, there is a “whitelabel” error view that renders the same data in HTML format (to customize it,
add a Vi ew that resolves to error). To replace the default behavior completely, you can implement
Error Cont r ol | er and register a bean definition of that type or add abean oftype Err or At t ri but es
to use the existing mechanism but replace the contents.

Tip

The Basi cError Control | er can be used as a base class for a custom Error Control | er.
This is particularly useful if you want to add a handler for a new content type (the default
is to handle text/ htm specifically and provide a fallback for everything else). To do so,
extend Basi cError Control | er, add a public method with a @Request Mappi ng that has a
pr oduces attribute, and create a bean of your new type.

2.1.0.BUILD-SNAPSHOT Spring Boot 91

https://freemarker.apache.org/docs/
http://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_the_markuptemplateengine
http://www.thymeleaf.org
https://mustache.github.io/

Spring Boot Reference Guide

You can also define a class annotated with @ont r ol | er Advi ce to customize the JISON document
to return for a particular controller and/or exception type, as shown in the following example:

@ontrol | er Advi ce(basePackageCl asses = AcneControl |l er.cl ass)
public class AcneControl | er Advi ce extends ResponseEntityExcepti onHandl er {

@xcept i onHandl er (Your Excepti on. cl ass)
@ResponseBody
ResponseEnt i ty<?> handl eControl | er Excepti on(Ht t pServl et Request request, Throwabl e ex) {
Htt pStatus status = get Status(request);
return new ResponseEntity<>(new CustonError Type(status.value(), ex.getMssage()), status);

}

private HttpStatus get Status(HttpServletRequest request) {
I nteger statusCode = (Integer) request.getAttribute("javax.servlet.error.status_code");
if (statusCode == null) {
return HttpStatus. | NTERNAL_SERVER ERROR;

}
return HttpStatus. val ueOr (st at usCode) ;

}

In the preceding example, if Your Except i on is thrown by a controller defined in the same package
as AcneCont r ol | er, a JSON representation of the Cust onEr r or Type POJO is used instead of the
ErrorAttri but es representation.

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add afiletoan/ error
folder. Error pages can either be static HTML (that is, added under any of the static resource folders)
or be built by using templates. The name of the file should be the exact status code or a series mask.

For example, to map 404 to a static HTML file, your folder structure would be as follows:

src/

+- main/
+- javal
| + <source code>
+- resources/

+- public/
+- error/
|+ 404.htn

+- <other public assets>

To map all 5xx errors by using a FreeMarker template, your folder structure would be as follows:

src/
+- main/
+- javal
| + <source code>
+- resources/
+- tenplates/
+- error/
| +- 5xx.ftl
+- <other tenplates>

For more complex mappings, you can also add beans that implement the Err or Vi ewResol ver
interface, as shown in the following example:

public class MErrorVi ewResol ver inplenents ErrorVi ewResol ver {

@verride
publ i ¢ Model AndVi ew resol veError Vi ewm Ht t pSer vl et Request request,

Htt pStat us status, Map<String, Object> npdel) {

2.1.0.BUILD-SNAPSHOT Spring Boot 92

Spring Boot Reference Guide

/'l Use the request or status to optionally return a Mdel AndVi ew
return ...

}

You can also use regular Spring MVC features such as @xcepti onHandl er methods and
@control | er Advi ce. The Error Control | er then picks up any unhandled exceptions.

Mapping Error Pages outside of Spring MVC

For applications that do not use Spring MVC, you can use the Err or PageRegi strar interface to
directly register Er r or Pages. This abstraction works directly with the underlying embedded servlet
container and works even if you do not have a Spring MVC Di spat cher Ser vl et .

@Bean
public ErrorPageRegi strar errorPageRegistrar(){
return new MyErrorPageRegistrar();

}

...
private static class MyErrorPageRegi strar inplenents ErrorPageRegistrar {

@verride
public void registerErrorPages(ErrorPageRegi stry registry) {

regi stry. addErr or Pages(new Error Page(Htt pSt at us. BAD_REQUEST, "/400"));
}

Note

If you register an Er r or Page with a path that ends up being handled by a Fi | t er (asis common
with some non-Spring web frameworks, like Jersey and Wicket), then the Fi | t er has to be
explicitly registered as an ERROR dispatcher, as shown in the following example:

@Bean

public FilterRegistrationBean nyFilter() {

FilterRegi strationBean registration = new FilterRegistrationBean();
registration.setFilter(new MWFilter());

regi stration. set Di spat cher Types(Enuntet . al | Of (Di spat cher Type. cl ass));
return registration;

}

Note that the default Fi | t er Regi st r at i onBean does not include the ERROR dispatcher type.

CAUTION:When deployed to a servlet container, Spring Boot uses its error page filter to
forward a request with an error status to the appropriate error page. The request can only
be forwarded to the correct error page if the response has not already been committed. By
default, WebSphere Application Server 8.0 and later commits the response upon successful
completion of a servlet's service method. You should disable this behavior by setting
com i bm ws. webcont ai ner. i nvokeFl ushAfter Servi ce tofal se.

Spring HATEOAS

If you develop a RESTful API that makes use of hypermedia, Spring Boot provides auto-configuration
for Spring HATEOAS that works well with most applications. The auto-configuration replaces the
need to use @nabl eHyper nedi aSupport and registers a number of beans to ease building

2.1.0.BUILD-SNAPSHOT Spring Boot 93

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#mvc-exceptionhandlers
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#mvc-ann-controller-advice

Spring Boot Reference Guide

hypermedia-based applications, including a Li nkDi scoverers (for client side support) and an
oj ect Mapper configured to correctly marshal responses into the desired representation. The
hj ect Mapper is customized by setting the various spri ng. j ackson. * properties or, if one exists,
by a Jackson2(hj ect Mapper Bui | der bean.

You can take control of Spring HATEOAS's configuration by using @nabl eHyper nedi aSupport.
Note that doing so disables the Obj ect Mapper customization described earlier.

CORS Support

Cross-origin resource sharing (CORS) is a W3C specification implemented by most browsers that lets
you specify in a flexible way what kind of cross-domain requests are authorized, instead of using some
less secure and less powerful approaches such as IFRAME or JSONP.

As of version 4.2, Spring MVC supports CORS. Using controller method CORS configuration with
@Cr 0ssOri gi n annotations in your Spring Boot application does not require any specific configuration.
Global CORS configuration can be defined by registering a WebM/cConfi gurer bean with a
customized addCor sMappi ngs(Cor sRegi st ry) method, as shown in the following example:

@onfiguration
public class MyConfiguration {

@Bean
publ i c WebM/cConfigurer corsConfigurer() {
return new WebMvcConfigurer() {
@verride
public voi d addCor sMappi ngs(CorsRegi stry registry) {
regi stry. addMappi ng("/api/**");
}
ba
}

}

27.2 The “Spring WebFlux Framework”

Spring WebFlux is the new reactive web framework introduced in Spring Framework 5.0. Unlike Spring
MVC, it does not require the Servlet API, is fully asynchronous and non-blocking, and implements the
Reactive Streams specification through the Reactor project.

Spring WebFlux comes in two flavors: functional and annotation-based. The annotation-based one is
quite close to the Spring MVC model, as shown in the following example:

@rest Control | er
@Request Mappi ng("/ users")
public class MyRestController {

@zet Mappi ng("/ {user}")
public Mono<User> get User (@at hVari abl e Long user) {
...

}

@zet Mappi ng("/{user}/custoners")

publ i c Fl ux<Custonmer> get User Cust omer s(@at hVari abl e Long user) {
...

}

@el et eMappi ng("/ {user}")
publ i c Mono<User > del et eUser (@at hVari abl e Long user) {
...

}
}

2.1.0.BUILD-SNAPSHOT Spring Boot 94

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/TR/cors/
https://caniuse.com/#feat=cors
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#cors
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#controller-method-cors-configuration
https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#global-cors-configuration
http://www.reactive-streams.org/
https://projectreactor.io/

Spring Boot Reference Guide

“WebFlux.fn”, the functional variant, separates the routing configuration from the actual handling of the
requests, as shown in the following example:

@onfiguration
public class RoutingConfiguration {

@Bean
publ i ¢ Rout er Functi on<Ser ver Response> nonoRout er Functi on(User Handl er user Handl er) {
return route(CGET("/{user}").and(accept (APPLI CATI ON_JSON)), userHandl er:: get User)
. andRout e(GET("/{user}/custonmers").and(accept (APPLI CATI ON_JSON)), userHandl er: : get User Cust oner s)
. andRout e(DELETE("/ {user}"). and(accept (APPLI CATI ON_JSON)), userHandl er:: del et eUser);

}

@onponent
public class UserHandl er {

publ i ¢ Mono<Ser ver Response> get User (Ser ver Request request) {
...

}

publ i ¢ Mono<Server Response> get User Cust oner s(Ser ver Request request) {
/...

}

publ i c Mbono<Server Response> del et eUser (Server Request request) {
1.

}

}

WebFlux is part of the Spring Framework and detailed information is available in its reference
documentation.

Tip

You can define as many Rout er Funct i on beans as you like to modularize the definition of the
router. Beans can be ordered if you need to apply a precedence.

To get started, add the spri ng- boot - st art er - webf | ux module to your application.

Note

Adding both spri ng-boot - starter-web and spri ng-boot - st art er - webf | ux modules
in your application results in Spring Boot auto-configuring Spring MVC, not WebFlux.
This behavior has been chosen because many Spring developers add spri ng-boot -
starter-webfl ux to their Spring MVC application to use the reactive Webd ient.
You can still enforce your choice by setting the chosen application type to
SpringAppl i cation. set WebAppl i cati onType(WebAppl i cati onType. REACTI VE) .

Spring WebFlux Auto-configuration
Spring Boot provides auto-configuration for Spring WebFlux that works well with most applications.
The auto-configuration adds the following features on top of Spring’s defaults:

» Configuring codecs for Ht t pMessageReader and Ht t pMessageW i t er instances (described later
in this document).

» Support for serving static resources, including support for WebJars (described later in this document).

2.1.0.BUILD-SNAPSHOT Spring Boot 95

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web-reactive.html#webflux-fn
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web-reactive.html#webflux-fn

Spring Boot Reference Guide

If you want to keep Spring Boot WebFlux features and you want to add additional WebFlux
configuration, you can add your own @onfi gurati on class of type WebFl uxConfi gur er but
without @nabl eWebFl ux.

If you want to take complete control of Spring WebFlux, you can add your own @onfi gur ati on
annotated with @nabl eWebFl ux.

HTTP Codecs with HttpMessageReaders and HttpMessageWriters

Spring WebFlux uses the Htt pMessageReader and Htt pMessageW it er interfaces to convert
HTTP requests and responses. They are configured with CodecConf i gur er to have sensible defaults
by looking at the libraries available in your classpath.

Spring Boot applies further customization by using CodecCust om zer instances. For example,
spring.jackson. * configuration keys are applied to the Jackson codec.

If you need to add or customize codecs, you can create a custom CodecCust oni zer component, as
shown in the following example:

i nport org.springfranmework. boot. web. codec. CodecCust oni zer;

@onfiguration
public class MyConfiguration {

@Bean
publ i ¢ CodecCustomni zer mnyCodecCustom zer () {
return codecConfigurer -> {
...
}
}

You can also leverage Boot’s custom JSON serializers and deserializers.

Static Content

By default, Spring Boot serves static content from a directory called /static (or /public or/
resour ces or / META- | NF/ r esour ces) in the classpath. It uses the Resour ceV\ebHandl er from
Spring WebFlux so that you can modify that behavior by adding your own WebFIl uxConf i gur er and
overriding the addResour ceHandl| er s method.

By default, resources are mapped on /**, but you can tune that by setting the
spring. webf | ux. stati c- pat h-pattern property. For instance, relocating all resources to /
resour ces/ ** can be achieved as follows:

spring. webf | ux. stati c- pat h-pattern=/resources/**

You can also customize the static resource locations by using spring.resources.static-
| ocat i ons. Doing so replaces the default values with a list of directory locations. If you do so, the
default welcome page detection switches to your custom locations. So, if there is an i ndex. ht m in
any of your locations on startup, it is the home page of the application.

In addition to the “standard” static resource locations listed earlier, a special case is made for Webjars
content. Any resources with a path in / webj ar s/ ** are served from jar files if they are packaged in
the Webjars format.

2.1.0.BUILD-SNAPSHOT Spring Boot 96

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#web-reactive
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#web-reactive
https://www.webjars.org/
https://www.webjars.org/

Spring Boot Reference Guide

Tip

Spring WebFlux applications do not strictly depend on the Servlet API, so they cannot be deployed
as war files and do not use the sr ¢/ mai n/ webapp directory.

Template Engines

As well as REST web services, you can also use Spring WebFlux to serve dynamic HTML content.
Spring WebFlux supports a variety of templating technologies, including Thymeleaf, FreeMarker, and
Mustache.

Spring Boot includes auto-configuration support for the following templating engines:

* FreeMarker

» Thymeleaf

* Mustache

When you use one of these templating engines with the default configuration, your templates are picked
up automatically from sr c/ mai n/ resour ces/ t enpl at es.

Error Handling

Spring Boot provides a WebExcept i onHandl er that handles all errors in a sensible way. Its position
in the processing order is immediately before the handlers provided by WebFlux, which are considered
last. For machine clients, it produces a JSON response with details of the error, the HTTP status, and the
exception message. For browser clients, there is a “whitelabel” error handler that renders the same data
in HTML format. You can also provide your own HTML templates to display errors (see the next section).

The first step to customizing this feature often involves using the existing mechanism but replacing or
augmenting the error contents. For that, you can add a bean of type Error Attri but es.

To change the error handling behavior, you can implement Er r or WebExcept i onHandl er and register
a bean definition of that type. Because a WebExcept i onHandl er is quite low-level, Spring Boot also
provides a convenient Abst r act Er r or WebExcept i onHandl er to let you handle errors in a WebFlux
functional way, as shown in the following example:

public class Custontrror WbExcepti onHandl er extends Abstract Error WebExcept i onHandl er {
/| Define constructor here

@verride
prot ect ed Router Functi on<Server Response> get Routi ngFuncti on(ErrorAttributes errorAttributes) {

return RouterFunctions
.route(aPredicate, aHandler)
. andRout e(anot her Predi cat e, anot her Handl er);

For a more complete picture, you can also subclass Def aul t Err or WebExcept i onHandl er directly
and override specific methods.

2.1.0.BUILD-SNAPSHOT Spring Boot 97

https://freemarker.apache.org/docs/
http://www.thymeleaf.org
http://mustache.github.io/

Spring Boot Reference Guide

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add a file to an /
error folder. Error pages can either be static HTML (that is, added under any of the static resource
folders) or built with templates. The name of the file should be the exact status code or a series mask.

For example, to map 404 to a static HTML file, your folder structure would be as follows:

src/
+- main/
+- javal
| + <source code>
+- resources/
+- public/
+- error/
| +- 404. htmn
+- <other public assets>

To map all 5xx errors by using a Mustache template, your folder structure would be as follows:

src/
+- main/
+- javal
| + <source code>
+- resources/
+- tenpl ates/
+- error/
| +- 5xx. nust ache
+- <other tenplates>

Web Filters

Spring WebFlux provides a WebFi | t er interface that can be implemented to filter HTTP request-
response exchanges. WebFi | t er beans found in the application context will be automatically used to
filter each exchange.

Where the order of the filters is important they can implement Or der ed or be annotated with @ der .
Spring Boot auto-configuration may configure web filters for you. When it does so, the orders shown
in the following table will be used:

Web Filter Order
MetricsWebFilter Or der ed. H GHEST_PRECEDENCE + 1
WebFi | t er Chai nPr oxy (Spring Security) -100
Htt pTraceWebFi |l ter Or der ed. LONEST_PRECEDENCE - 10

27.3 JAX-RS and Jersey

If you prefer the JAX-RS programming model for REST endpoints, you can use one of the available
implementations instead of Spring MVC. Jersey and Apache CXF work quite well out of the box. CXF
requires you to register its Servl et or Filt er as a @ean in your application context. Jersey has
some native Spring support, so we also provide auto-configuration support for it in Spring Boot, together
with a starter.

To get started with Jersey, include the spri ng- boot - st art er-j er sey as a dependency and then
you need one @ean of type Resour ceConfi g in which you register all the endpoints, as shown in
the following example:

2.1.0.BUILD-SNAPSHOT Spring Boot 98

https://jersey.github.io/
http://cxf.apache.org/

Spring Boot Reference Guide

@onponent
public class JerseyConfig extends ResourceConfig {

public JerseyConfig() {
regi st er (Endpoi nt. cl ass) ;

}
}

Warning

Jersey’s support for scanning executable archives is rather limited. For example, it cannot scan
for endpoints in a package found in WEB- | NF/ ¢l asses when running an executable war file.
To avoid this limitation, the packages method should not be used, and endpoints should be
registered individually by using the r egi st er method, as shown in the preceding example.

For more advanced customizations, you can also register an arbitrary number of beans that implement
Resour ceConfi gCust om zer.

All the registered endpoints should be @onponents with HTTP resource annotations (@ET and
others), as shown in the following example:

@onponent
@ath("/hello")
public class Endpoint {

@ET
public String nessage() {
return "Hello";

}

Since the Endpoi nt is a Spring @onponent , its lifecycle is managed by Spring and you can use
the @Aut owi r ed annotation to inject dependencies and use the @/al ue annotation to inject external
configuration. By default, the Jersey servlet is registered and mapped to / *. You can change the
mapping by adding @\ppl i cat i onPat h to your Resour ceConfi g.

By default, Jersey is set up as a Servlet in a @ean of type Ser vl et Regi strati onBean named
j erseyServl et Regi stration. By default, the servlet is initialized lazily, but you can customize
that behavior by setting spri ng. j er sey. servl et . | oad- on- st art up. You can disable or override
that bean by creating one of your own with the same name. You can also use a filter instead
of a servlet by setting spring.jersey.type=filter (in which case, the @ean to replace or
override is jerseyFilterRegi stration). The filter has an @ der, which you can set with
spring.jersey.filter.order. Both the servlet and the filter registrations can be given init
parameters by using spri ng. j ersey.init.* to specify a map of properties.

There is a Jersey sample so that you can see how to set things up.
27.4 Embedded Servlet Container Support
Spring Boot includes support for embedded Tomcat, Jetty, and Undertow servers. Most developers use

the appropriate “Starter” to obtain a fully configured instance. By default, the embedded server listens
for HTTP requests on port 8080.

2.1.0.BUILD-SNAPSHOT Spring Boot 99

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-jersey
http://tomcat.apache.org/
https://www.eclipse.org/jetty/
http://undertow.io/

Spring Boot Reference Guide

Warning

If you choose to use Tomcat on CentOS, be aware that, by default, a temporary directory is used
to store compiled JSPs, file uploads, and so on. This directory may be deleted by t npwat ch
while your application is running, leading to failures. To avoid this behavior, you may want
to customize your t mpwat ch configuration such that t ontat . * directories are not deleted or
configure server. t ontat . basedi r such that embedded Tomcat uses a different location.

Servlets, Filters, and listeners

When using an embedded servlet container, you can register servlets, filters, and all the listeners (such
as Ht t pSessi onLi st ener) from the Servlet spec, either by using Spring beans or by scanning for
Servlet components.

Registering Servlets, Filters, and Listeners as Spring Beans

Any Servl et, Filter, or servlet *Li st ener instance that is a Spring bean is registered with the
embedded container. This can be particularly convenient if you want to refer to a value from your
appl i cation. properti es during configuration.

By default, if the context contains only a single Servlet, it is mapped to / . In the case of multiple servlet
beans, the bean name is used as a path prefix. Filters map to / *.

If convention-based mapping is not flexible enough, you can use the Ser vl et Regi str ati onBean,
FilterRegi strati onBean, and Servl et Li st ener Regi strati onBean classes for complete
control.

Spring Boot ships with many auto-configurations that may define Filter beans. Here are a few examples
of Filters and their respective order (lower order value means higher precedence):

Servlet Filter Order

Or der edChar act er Encodi ngFi | t er Or der ed. Hl GHEST_PRECEDENCE
WebMscMetricsFilter Or der ed. H GHEST_PRECEDENCE + 1
Error PageFil ter Or der ed. H GHEST_PRECEDENCE + 1
HtpTraceFilter O der ed. LONEST_PRECEDENCE - 10

It is usually safe to leave Filter beans unordered.

If a specific order is required, you should avoid configuring a Filter that reads the request body at
O der ed. H GHEST_PRECEDENCE, since it might go against the character encoding configuration of
your application. If a Servlet filter wraps the request, it should be configured with an order that is less
than or equal to Fi | t er Regi strati onBean. REQUEST_WRAPPER _FI LTER_MAX_ORDER

Servlet Context Initialization

Embedded servlet containers do not directly execute the Servlet
3.0+ j avax. servl et. Servl et Containerlnitializer interface or Spring’s
org. springframewor k. web. WebAppl i cationlnitializer interface. This is an intentional

2.1.0.BUILD-SNAPSHOT Spring Boot 100

https://www.centos.org/

Spring Boot Reference Guide

design decision intended to reduce the risk that third party libraries designed to run inside a war may
break Spring Boot applications.

If you need to perform servlet context initialization in a Spring
Boot application, you should register a bean that implements the
org. springframewor k. boot . web. servl et. Servl et ContextlInitializer interface. The
single onSt ar t up method provides access to the Ser vl et Cont ext and, if necessary, can easily be
used as an adapter to an existing WebAppl i cationlnitializer.

Scanning for Servlets, Filters, and listeners

When using an embedded container, automatic registration of classes annotated with @ébSer vl et ,
@\ebFi | ter, and @\¥bLi st ener can be enabled by using @er vl et Conponent Scan.

Tip

@ser vl et Conponent Scan has no effect in a standalone container, where the container’s built-
in discovery mechanisms are used instead.

The ServletWebServerApplicationContext

Under the hood, Spring Boot uses a different type of ApplicationContext for
embedded servlet container support. The Servl et WebServer Applicati onContext is a
special type of WebApplicationContext that bootstraps itself by searching for a
single Servl et WebServer Factory bean. Usually a Tontat Servl et WebServer Factory,
JettyServl et WebSer ver Fact ory, or Undert owSer vl et WebSer ver Fact ory has been auto-
configured.

Note

You usually do not need to be aware of these implementation classes. Most applications are auto-
configured, and the appropriate Appl i cat i onCont ext and Ser vl et WebSer ver Fact ory are
created on your behalf.

Customizing Embedded Servlet Containers

Common servlet container settings can be configured by using Spring Envi r onnment properties.
Usually, you would define the properties in your appl i cat i on. properti es file.

Common server settings include:

» Network settings: Listen port for incoming HTTP requests (ser ver . port), interface address to bind
to server. addr ess, and so on.

» Session settings: Whether the session is persistent (ser ver . ser vl et. sessi on. per si st ence),
session timeout (server.servl et.session.tinmeout), location of session
data (server.servl et.session.store-dir), and session-cookie configuration
(server. servl et. session. cooki e. *).

» Error management: Location of the error page (ser ver . error. pat h) and so on.

+ SSL

2.1.0.BUILD-SNAPSHOT Spring Boot 101

Spring Boot Reference Guide

e HTTP compression

Spring Boot tries as much as possible to expose common settings, but this is not always possible.
For those cases, dedicated namespaces offer server-specific customizations (see server. t ontat
and server. undert ow). For instance, access logs can be configured with specific features of the
embedded servlet container.

Tip

See the Ser ver Properti es class for a complete list.

Programmatic Customization

If you need to programmatically configure your embedded servlet
container, you can register a Spring bean that implements the
WebSer ver Fact or yCust om zer interface. WebSer ver Fact or yCust om zer provides access to
the Confi gurabl eSer vl et WebSer ver Fact ory, which includes numerous customization setter
methods. The following example shows programmatically setting the port:

i nport org.springframework. boot. web. server. WbSer ver Fact or yCust oni zer;
i nport org.springframework. boot. web. servl et. server. Confi gurabl eSer vl et WebSer ver Factory;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class Customizati onBean inplenents
WebSer ver Fact or yCust oni zer <Conf i gur abl eSer vl et WebSer ver Fact ory> {

@verride
public void customn ze(Configurabl eServl et WebSer ver Factory server) {
server. set Port (9000);

}

Note
Tontat Ser vl et WebSer ver Fact ory, JettyServl et WebSer ver Fact ory and
Undert owSer vl et WebSer ver Fact ory are dedicated variants of

Confi gur abl eSer vl et WebSer ver Fact ory that have additional customization setter
methods for Tomcat, Jetty and Undertow respectively.

Customizing ConfigurableServietWebServerFactory Directly

If the preceding customization techniques are too limited, you can
register the Tontat Servl etWhbServerFactory, JettyServletWbServerFactory, or
Under t owSer vl et WebSer ver Fact or y bean yourself.

@Bean
publ i c Configurabl eServl et WebSer ver Fact ory webServer Factory() {

Tontat Ser vl et WebServer Factory factory = new Tontat Servl et WebSer ver Factory();
factory. set Port (9000) ;

factory. set Sessi onTi neout (10, Ti neUnit.M NUTES);

factory. addErr or Pages(new Error Page(Htt pSt at us. NOT_FOUND, "/notfound. htm "));
return factory;

Setters are provided for many configuration options. Several protected method “hooks” are also provided
should you need to do something more exotic. See the source code documentation for details.

2.1.0.BUILD-SNAPSHOT Spring Boot 102

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/web/servlet/server/ConfigurableServletWebServerFactory.html

Spring Boot Reference Guide

JSP Limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged as
an executable archive), there are some limitations in the JSP support.

» With Jetty and Tomcat, it should work if you use war packaging. An executable war will work when
launched with j ava -j ar, and will also be deployable to any standard container. JSPs are not
supported when using an executable jar.

» Undertow does not support JSPs.

» Creating a custom error. j sp page does not override the default view for error handling. Custom
error pages should be used instead.

There is a JSP sample so that you can see how to set things up.

2.1.0.BUILD-SNAPSHOT Spring Boot 103

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-web-jsp

Spring Boot Reference Guide

28. Security

If Spring Security is on the classpath, then web applications are secured by default. Spring
Boot relies on Spring Security's content-negotiation strategy to determine whether to use
htt pBasi ¢ or f or nLogi n. To add method-level security to a web application, you can also add
@nabl ed obal Met hodSecur i ty with your desired settings. Additional information can be found in
the Spring Security Reference Guide.

The default User Det ai | sSer vi ce has a single user. The user name is user, and the password is
random and is printed at INFO level when the application starts, as shown in the following example:

Usi ng generated security password: 78fa095d- 3f4c-48bl-ad50-e24c31d5cf 35

Note

If you fine-tune your logging configuration, ensure that the
org. spri ngframewor k. boot . aut oconfi gure. securi ty category is setto log | NFO-level
messages. Otherwise, the default password is not printed.

You can change the username and password by providing a spri ng. security. user.nane and
spring. security.user. password.

The basic features you get by default in a web application are:

* A UserDetail sService (or ReactiveUserDetailsService in case of a WebFlux
application) bean with in-memory store and a single user with a generated password (see
SecurityProperties. User forthe properties of the user).

» Form-based login or HTTP Basic security (depending on Content-Type) for the entire application
(including actuator endpoints if actuator is on the classpath).

« ADefaul t Aut henti cati onEvent Publ i sher for publishing authentication events.

You can provide a different Aut hent i cati onEvent Publ i sher by adding a bean for it.

28.1 MVC Security

The default security configuration is implemented in SecurityAutoConfiguration
and UserDet ail sServi ceAut oConfi guration. SecurityAutoConfiguration imports
Spri ngBoot WebSecuri t yConfi guration for web security and
User Det ai | sSer vi ceAut oConfi gur ati on configures authentication, which is also relevant in
non-web applications. To switch off the default web application security configuration completely,
you can add a bean of type WebSecuri t yConfi gur er Adapt er (doing so does not disable the
User Det ai | sSer vi ce configuration or Actuator’'s security).

To also switch off the UserDetail sService configuration, you can add a bean of type
User Det ai | sServi ce, Aut henti cati onProvi der, or Aut henti cati onManager. There are
several secure applications in the Spring Boot samples to get you started with common use cases.

Access rules can be overridden by adding a custom WebSecur i t yConf i gur er Adapt er . Spring Boot
provides convenience methods that can be used to override access rules for actuator endpoints and

2.1.0.BUILD-SNAPSHOT Spring Boot 104

http://projects.spring.io/spring-security/
https://docs.spring.io/spring-security/site/docs/5.1.0.RELEASE/reference/htmlsingle#jc-method
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/security/SecurityProperties.User.html
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/

Spring Boot Reference Guide

static resources. Endpoi nt Request can be used to create a Request Mat cher that is based on
the managenent . endpoi nt s. web. base- pat h property. Pat hRequest can be used to create a
Request Mat cher for resources in commonly used locations.

28.2 WebFlux Security

Similar to Spring MVC applications, you can secure your WebFlux applications by adding the
spring-boot -starter-security dependency. The default security configuration is implemented
in ReactiveSecurityAutoConfiguration and UserDet ai |l sServi ceAut oConfi gurati on.
React i veSecurit yAut oConfi gurati on imports WebFl uxSecurityConfi gurati on for web
security and User Det ai | sSer vi ceAut oConfi gur ati on configures authentication, which is also
relevant in non-web applications. To switch off the default web application security configuration
completely, you can add a bean of type WebFi | t er Chai nPr oxy (doing so does not disable the
User Det ai | sSer vi ce configuration or Actuator’s security).

To also switch off the UserDetail sService configuration, you can add a bean of type
React i veUser Det ai | sServi ce or React i veAut henti cati onManager .

Access rules can be configured by adding a custom Secur i t yWebFi | t er Chai n. Spring Boot provides
convenience methods that can be used to override access rules for actuator endpoints and static
resources. Endpoi nt Request can be used to create a Ser ver WebExchangeMat cher that is based
on the managenent . endpoi nt s. web. base- pat h property.

Pat hRequest can be used to create a Ser ver WebExchangeMat cher for resources in commonly
used locations.

For example, you can customize your security configuration by adding something like:

@Bean
public SecurityWebFilterChain springSecurityFilterChain(ServerHtpSecurity http) {
return http

. aut hori zeExchange()
. mat cher s(Pat hRequest . t oSt at i cResour ces() . at CoomonLocations()).perm tAll ()
. pat hvat chers("/foo", "/bar")
.aut henti cated().and()
.formLogi n() . and()
Lbui I d();
}

28.3 OAuth2

OAuth2 is a widely used authorization framework that is supported by Spring.
Client

If you have spri ng- security-oaut h2-client onyour classpath, you can take advantage of some
auto-configuration to make it easy to set up an OAuth2/Open ID Connect clients. This configuration
makes use of the properties under QAut h2Cl i ent Properti es.

You can register multiple OAuth2/OpenID Connect providers under the
spring.security. oauth2.client.provider prefix, as shown in the following example:

spring. security.oauth2.client.provider. ny-oauth-provider.authorization-uri=http://ny-auth-server/oauth/
aut hori ze
spring. security.oauth2.client.provider.ny-oauth-provider.token-uri=http://nmy-auth-server/oauth/token

2.1.0.BUILD-SNAPSHOT Spring Boot 105

https://oauth.net/2/

Spring Boot Reference Guide

client.
client.
client.
client.

oaut h2.
oaut h2.
oaut h2.
oaut h2.

security.
security.
security.
security.

provi der.
provi der .
provi der .
provi der .

ny- oaut h- provi der
ny- oaut h- provi der
ny- oaut h- provi der
nmy- oaut h- provi der

.user-info-uri=http://ny-auth-server/userinfo
. user-info-aut hentication-nmet hod=header
.jwk-set-uri=http://ny-auth-server/token_keys
.user-nane-attribute=name

spring.
spring.
spring.
spring.

For OpenlD Connect providers that support OpenID Connect discovery, the configuration can be further
simplified. The provider needs to be configured with an i ssuer-uri which is the URI that the it
asserts as its Issuer Identifier. For example, if the i ssuer-uri provided is "https://example.com”,
then an Qpenl D Provi der Configuration Request will be made to "https://example.com/.well-
known/openid-configuration”. The result is expected to be an Openl D Provi der Confi guration
Response. The following example shows how an OpenlD Connect Provider can be configured with

thei ssuer-uri:

spring.security.oauth2.client.provider.oidc-provider.issuer-uri=https://dev-123456. okt aprevi ew. conl
oaut h2/ defaul t/

OpenlD Connect Login client registration

You can register multiple Open ID Connect clients under the

spring.security.oauth2.client.registration.login prefix, as shown in the following

example:
spring.security.oauth2.client.registration.login.ny-client-1.client-id=abcd
spring.security.oauth2.client.registration.login.ny-client-1.client-secret=password
spring.security.oauth2.client.registration.login. nmy-client-1.client-name=Client for user scope
spring.security.oauth2.client.registration.login.ny-client-1.provider=ny-oauth-provider
spring.security.oauth2.client.registration.login.ny-client-1.scope=user
spring.security.oauth2.client.registration.login.ny-client-1.redirect-uri=http://Ilocal host: 8080/ ogin/

oaut h2/ code/ ny-client-1

spring. security.oauth2.client.

registration

.l ogi

n.ny-client-2.

spring.security.oauth2.client.registration.login.ny-client-1.client-authentication-nethod=basic
spring.security.oauth2.client.registration.login.ny-client-1.authorization-grant-type=authorization_code
spring.security.oauth2.client.registration.login.nmy-client-2.client-id=abcd
spring.security.oauth2.client.registration.login.ny-client-2.client-secret=password
spring.security.oauth2.client.registration.login.ny-client-2.client-name=Cient for emnil scope
spring.security.oauth2.client.registration.login.ny-client-2.provider=ny-oauth-provi der
spring.security.oauth2.client.registration.login.ny-client-2.scope=email
spring.security.oauth2.client.registration.login.ny-client-2.redirect-uri=http://1ocal host: 8080/1 ogi n/
oaut h2/ code/ nmy-client-2
spring.security.oauth2.client.registration.login.ny-client-2.client-authentication-nethod=basic

aut hori zati on- grant -t ype=aut hori zati on_code

By default, Spring Security’s QAut h2Logi nAut henti cati onFi | t er only processes URLs matching
/1 ogi n/ oaut h2/ code/ *. If you want to customize the r edi r ect - uri to use a different pattern, you
need to provide configuration to process that custom pattern. For example, for servlet applications, you
can add your own WebSecuri t yConf i gur er Adapt er that resembles the following:

public class OAut h2Logi nSecurityConfi g extends WebSecurityConfi gurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
. aut hori zeRequest s()
. anyRequest () . aut hent i cat ed()
.and()
. oaut h2Logi n()
.redirectionEndpoint ()
. baseUri ("/cust om cal | back");

The same properties are applicable to both servlet and reactive applications.

2.1.0.BUILD-SNAPSHOT Spring Boot 106

https://openid.net/specs/openid-connect-discovery-1_0.html

Spring Boot Reference Guide

OAuth2 Authorization Code client registration

You can

register

multiple

OAuth2

aut hori zati on_code

clients under the

spring.security.oauth2.client.registration.authorization-code prefix, as shown in
the following example:

security.
security.
security.

spring.
spring.
spring.

scope
spring.
spring.
spring.

security.
security.
security.

spring.security.
nmet hod=basi c
spring.security.

security.
security.
security.

spring.
spring.
spring.

scope
spring.
spring.
spring.

security.
security.
security.

spring.security.
nmet hod=basi c
spring.security.

oaut h2.
oaut h2.
oaut h2.

oaut h2.
oaut h2.
oaut h2.
redirect-uri.com

oaut h2.

oaut h2

oaut h2.
oaut h2.
oaut h2.

oaut h2.
oaut h2.
oaut h2.
redirect-uri.com

oaut h2.

oaut h2

client

.client.
type=aut hori zati on_code

client

client

.client.
type=aut hori zati on_code

client.
client.
client.

client.
client.
client.

client.
client.

client.
client.
client.

regi stration.
regi stration.
regi stration.

regi stration.
regi stration.
regi stration.
.registration.
regi stration.
.registration.
registration.
regi stration.
regi stration.
regi stration.
regi stration.

.registration.

regi stration.

aut hori zati on- code

aut hori zati on- code

aut hori zati on- code

aut hori zati on- code.
aut hori zati on- code.
aut hori zati on- code.

aut hori zati on- code.

aut hori zati on- code.
aut hori zati on- code.

aut hori zati on- code.

aut hori zati on- code.

aut hori zati on- code.
aut hori zati on- code.

aut hori zati on- code.

ny-client-1.
ny-client-1.
ny-client-1.

ny-client-1.
ny-client-1.
ny-client-1.

.ny-client-1.

ny-client-1.

.ny-client-2.
aut hori zati on- code.
aut hori zati on- code.

ny-client-2.
ny-client-2.

ny-client-2.
ny-client-2.
ny-client-2.

.ny-client-2.

ny-client-2.

client-id=abcd
client-secret=password
client-name=Client for user

provi der =nmy- oaut h- provi der
scope=user
redirect-uri=http://ny-
client-authentication-

aut hori zati on-grant -
client-id=abcd
client-secret=password
client-nanme=Client for email
provi der =ny- oaut h- provi der
scope=emai |
redirect-uri=http://ny-

client-authentication-

aut hori zati on-grant -

OAuth2 client registration for common providers

For common OAuth2 and OpenlD providers, including Google, Github, Facebook, and Okta, we provide
a set of provider defaults (googl e, gi t hub, f acebook, and okt a, respectively).

If you do not need to customize these providers, you can set the pr ovi der attribute to the one for
which you need to infer defaults. Also, if the ID of your client matches the default supported provider,
Spring Boot infers that as well.

In other words, the two configurations in the following example use the Google provider:

oaut h2.
oaut h2.
oaut h2.

security.
security.
security.

client.registration.login.ny-client.client-id=abcd
client.registration.login.my-client.client-secret=password
client.registration.login.ny-client.provider=googl e

spring.
spring.
spring.

oaut h2.
oaut h2.

security.
security.

client.registration.login.google.client-id=abcd
client.registration.|ogin.google.client-secret=password

spring.
spring.

Resource Server

If you have spri ng- security-oaut h2-resour ce-server on your classpath, Spring Boot can set
up an OAuth2 Resource Server as long as a JWK Set URI or OIDC Issuer URI is specified, as shown
in the following examples:

spring. security.oauth2.resourceserver.jw.jwk-set-uri=https://exanple.conl oauth2/defaul t/vl/ keys

spring. security.oauth2.resourceserver.jw.issuer-uri=https://dev-123456. okt aprevi ew. com’ oaut h2/ def aul t/

The same properties are applicable for both servlet and reactive applications.

2.1.0.BUILD-SNAPSHOT Spring Boot 107

Spring Boot Reference Guide

Alternatively, you can define your own Jwt Decoder bean for servlet applications or a
React i veJwt Decoder for reactive applications.

Authorization Server

Currently, Spring Security does not provide support for implementing an OAuth 2.0 Authorization Server.
However, this functionality is available from the Spring Security OAuth project, which will eventually be
superseded by Spring Security completely. Until then, you can use the spri ng- security- oaut h2-
aut oconf i gur e module to easily set up an OAuth 2.0 authorization server; see its documentation for
instructions.

28.4 Actuator Security

For security purposes, all actuators other than / heal th and /i nf o are disabled by default. The
management . endpoi nt s. web. exposur e. i ncl ude property can be used to enable the actuators.

If Spring Security is on the classpath and no other WebSecurityConfigurerAdapter is present, all
actuators other than / heal t h and / i nf o are secured by Spring Boot auto-configuration. If you define
a custom WebSecuri t yConfi gur er Adapt er, Spring Boot auto-configuration will back off and you
will be in full control of actuator access rules.

Note

Before setting the managenent. endpoi nts. web. exposure.incl ude, ensure that the
exposed actuators do not contain sensitive information and/or are secured by placing them behind
a firewall or by something like Spring Security.

Cross Site Request Forgery Protection

Since Spring Boot relies on Spring Security’s defaults, CSRF protection is turned on by default. This
means that the actuator endpoints that require a POST (shutdown and loggers endpoints), PUT or
DELETE will get a 403 forbidden error when the default security configuration is in use.

Note

We recommend disabling CSRF protection completely only if you are creating a service that is
used by non-browser clients.

Additional information about CSRF protection can be found in the Spring Security Reference Guide.

2.1.0.BUILD-SNAPSHOT Spring Boot 108

https://projects.spring.io/spring-security-oauth/
https://docs.spring.io/spring-security-oauth2-boot
https://docs.spring.io/spring-security/site/docs/5.1.0.RELEASE/reference/htmlsingle#csrf

Spring Boot Reference Guide

29. Working with SQL Databases

The Spring Framework provides extensive support for working with SQL databases, from direct JDBC
access using JdbcTenpl at e to complete “object relational mapping” technologies such as Hibernate.
Spring Data provides an additional level of functionality: creating Reposi t or y implementations directly
from interfaces and using conventions to generate queries from your method names.

29.1 Configure a DataSource

Java’s j avax. sql . Dat aSour ce interface provides a standard method of working with database
connections. Traditionally, a 'DataSource' uses a URL along with some credentials to establish a
database connection.

Tip

See the “How-to” section for more advanced examples, typically to take full control over the
configuration of the DataSource.

Embedded Database Support

It is often convenient to develop applications by using an in-memory embedded database. Obviously,
in-memory databases do not provide persistent storage. You need to populate your database when your
application starts and be prepared to throw away data when your application ends.

Tip
The “How-to” section includes a section on how to initialize a database.

Spring Boot can auto-configure embedded H2, HSQL, and Derby databases. You need not provide any
connection URLs. You need only include a build dependency to the embedded database that you want
to use.

Note

If you are using this feature in your tests, you may notice that the same database is reused
by your whole test suite regardless of the number of application contexts that you use. If you
want to make sure that each context has a separate embedded database, you should set
spring. dat asour ce. gener at e- uni que- nane tot r ue.

For example, the typical POM dependencies would be as follows:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-data-jpa</artifactld>
</ dependency>
<dependency>
<groupl d>or g. hsql db</ gr oupl d>
<artifactld>hsqgl db</artifactld>
<scope>runti me</ scope>
</ dependency>

2.1.0.BUILD-SNAPSHOT Spring Boot 109

http://projects.spring.io/spring-framework/
https://projects.spring.io/spring-data/
http://www.h2database.com
http://hsqldb.org/
http://db.apache.org/derby/

Spring Boot Reference Guide

Note

You need a dependency on spri ng- j dbc for an embedded database to be auto-configured. In
this example, it is pulled in transitively through spri ng- boot - st art er - dat a- j pa.

Tip

If, for whatever reason, you do configure the connection URL for an embedded database,
take care to ensure that the database’s automatic shutdown is disabled. If you use H2, you
should use DB_CLOSE_ON_EXI T=FALSE to do so. If you use HSQLDB, you should ensure that
shut down=t r ue is not used. Disabling the database’s automatic shutdown lets Spring Boot
control when the database is closed, thereby ensuring that it happens once access to the database
is no longer needed.

Connection to a Production Database

Production database connections can also be auto-configured by using a pooling Dat aSour ce. Spring
Boot uses the following algorithm for choosing a specific implementation:

1. We prefer HikariCP for its performance and concurrency. If HikariCP is available, we always choose it.

2. Otherwise, if the Tomcat pooling Dat aSour ce is available, we use it.

3. If neither HikariCP nor the Tomcat pooling datasource are available and if Commons DBCP?2 is
available, we use it.

If you use the spri ng- boot -starter-jdbc orspring-boot-starter-data-jpa “starters”, you
automatically get a dependency to Hi kar i CP.

Note

You can bypass that algorithm completely and specify the connection pool to use by setting the
spring. dat asour ce. t ype property. This is especially important if you run your application in
a Tomcat container, as t ontat - j dbc is provided by default.

Tip

Additional connection pools can always be configured manually. If you define your own
Dat aSour ce bean, auto-configuration does not occur.

DataSource configuration is controlled by external configuration propertiesinspri ng. dat asour ce. *.
For example, you might declare the following section in appl i cati on. properti es:

spring. dat asour ce. url =j dbc: nysql : / /1 ocal host/test

spri ng. dat asour ce. user nanme=dbuser

spring. dat asour ce. passwor d=dbpass

spring. dat asour ce. dri ver - cl ass- nane=com nysql . j dbc. Dri ver

Note

You should at least specify the URL by setting the spri ng. dat asource. url property.
Otherwise, Spring Boot tries to auto-configure an embedded database.

2.1.0.BUILD-SNAPSHOT Spring Boot 110

https://github.com/brettwooldridge/HikariCP
https://commons.apache.org/proper/commons-dbcp/

Spring Boot Reference Guide

Tip

You often do not need to specify the dri ver - cl ass- nane, since Spring Boot can deduce it for
most databases from the ur | .

Note

For a pooling Dat aSour ce to be created, we need to be able to verify that a valid Dri ver
class is available, so we check for that before doing anything. In other words, if you
setspri ng. dat asour ce. dri ver - cl ass- name=com nysql . j dbc. Dri ver, thenthat class
has to be loadable.

See Dat aSour ceProperties for more of the supported options. These are the standard
options that work regardless of the actual implementation. It is also possible to fine-tune
implementation-specific settings by using their respective prefix (spri ng. dat asour ce. hi kari . *,
spring. dat asource.tonctat.*, and spring.datasource.dbcp2.*). Refer to the
documentation of the connection pool implementation you are using for more details.

For instance, if you use the Tomcat connection pool, you could customize many additional settings, as
shown in the following example:

Nunmber of ns to wait before throwi ng an exception if no connection is avail able.
spring. dat asour ce. t ontat . max- wai t =10000

Maxi mum nunber of active connections that can be allocated fromthis pool at the sane tine.
spring. dat asour ce. t ontat . max- acti ve=50

Val idate the connection before borrowing it fromthe pool.
spring. dat asour ce. tontat .t est-on-borrow=true

Connection to a JNDI DataSource

If you deploy your Spring Boot application to an Application Server, you might want to configure and
manage your DataSource by using your Application Server's built-in features and access it by using
JNDI.

The spring. dat asour ce. j ndi - nane property can be used as an
alternative to the spring.datasource.url, spring.datasource.username, and
spri ng. dat asour ce. passwor d properties to access the Dat aSour ce from a specific INDI location.
For example, the following sectionin appl i cat i on. pr operti es shows how you can access a JBoss
AS defined Dat aSour ce:

spring. dat asour ce. j ndi - nane=j ava: j boss/ dat asour ces/ cust oner s

29.2 Using JdbcTemplate

Spring’s JdbcTenpl at e and NanedPar anet er JdbcTenpl at e classes are auto-configured, and you
can @\ut owi r e them directly into your own beans, as shown in the following example:

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. jdbc. core.JdbcTenpl at e;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class M/Bean {

private final JdbcTenpl ate jdbcTenpl ate;

2.1.0.BUILD-SNAPSHOT Spring Boot 111

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java
http://tomcat.apache.org/tomcat-8.0-doc/jdbc-pool.html#Common_Attributes

Spring Boot Reference Guide

@\ut owi r ed
publ i c MyBean(JdbcTenpl ate jdbcTenpl ate) {
this.jdbcTenpl ate = jdbcTenpl at e;

}

...

}

You can customize some properties of the template by using the spring.jdbc.tenpl ate.*
properties, as shown in the following example:

spring.j dbc. t enpl at e. max-r ows=500

Note

The NanedPar anet er JdbcTenpl at e reuses the same JdbcTenpl at e instance behind the
scenes. If more than one JdbcTenpl at e is defined and no primary candidate exists, the
NanedPar anmet er JdbcTenpl at e is not auto-configured.

29.3 JPA and Spring Data JPA

The Java Persistence API is a standard technology that lets you “map” objects to relational databases.
The spri ng-boot - st art er-dat a-j pa POM provides a quick way to get started. It provides the
following key dependencies:

» Hibernate: One of the most popular JPA implementations.
» Spring Data JPA: Makes it easy to implement JPA-based repositories.
» Spring ORMs: Core ORM support from the Spring Framework.

Tip

We do not go into too many details of JPA or Spring Data here. You can follow the “Accessing
Data with JPA” guide from spring.io and read the Spring Data JPA and Hibernate reference
documentation.

Entity Classes

Traditionally, JPA “Entity” classes are specified in a persistence. xm file. With Spring Boot,
this file is not necessary and “Entity Scanning” is used instead. By default, all packages
below your main configuration class (the one annotated with @nabl eAut oConfi gurati on or
@bpr i ngBoot Appl i cati on) are searched.

Any classes annotated with @ntity, @nbeddabl e, or @/appedSuper cl ass are considered. A
typical entity class resembles the following example:

package com exanpl e. myapp. domai n;

inport java.io.Serializable;
i nport javax. persi stence. *;
@ntity

public class Gty inplenents Serializable {

@d

2.1.0.BUILD-SNAPSHOT Spring Boot 112

https://projects.spring.io/spring-data/
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io
http://projects.spring.io/spring-data-jpa/
https://hibernate.org/orm/documentation/

Spring Boot Reference Guide

@zener at edVal ue
private Long id;

@ol um(nul | abl e = fal se)
private String nane;

@ol um(nul | abl e = fal se)
private String state;

/1 ... additional nenbers, often include @neToMany nappi ngs

protected Cty() {
/'l no-args constructor required by JPA spec
/1 this one is protected since it shouldn't be used directly

}

public City(String name, String state) {
t his. nane = nane;
this.state = state;

}

public String getNane() {
return this.naneg;

}

public String getState() {
return this.state;

}

Il ... etc

Tip

You can customize entity scanning locations by using the @nt it yScan annotation. See the
“Section 83.4, “Separate @Entity Definitions from Spring Configuration™ how-to.

Spring Data JPA Repositories

Spring Data JPA repositories are interfaces that you can define to access data. JPA queries are created
automatically from your method names. For example, a Ci t yReposi t ory interface might declare a
findAl | ByState(String state) method to find all the cities in a given state.

For more complex queries, you can annotate your method with Spring Data’s Quer y annotation.

Spring Data repositories usually extend from the Reposi t ory or Cr udReposi t ory interfaces. If you
use auto-configuration, repositories are searched from the package containing your main configuration
class (the one annotated with @nabl eAut oConf i gur ati on or @pr i ngBoot Appl i cat i on) down.

The following example shows a typical Spring Data repository interface definition:

package com exanpl e. nyapp. donai n;

i mport org.springframework. data. domai n. *;
i nport org.springframework. data.repository.*;

public interface CityRepository extends Repository<City, Long> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

City findByNameAndSt at eAl | I gnoringCase(String name, String state);

2.1.0.BUILD-SNAPSHOT Spring Boot 113

http://projects.spring.io/spring-data-jpa/
https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/Query.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html

Spring Boot Reference Guide

Spring Data JPA repositories support three different modes of bootstrapping: default, deferred, and lazy.
To enable deferred or lazy bootstrapping, set the spri ng. dat a. j pa. reposi tori es. boot st r ap-
node to deferred or | azy respectively. When using deferred or lazy bootstrapping, the auto-
configured Ent i t yManager Fact or yBui | der will use the context’s async task executor, if any, as
the bootstrap executor.

Tip

We have barely scratched the surface of Spring Data JPA. For complete details, see the Spring
Data JPA reference documentation.

Creating and Dropping JPA Databases

By default, JPA databases are automatically created only if you use an embedded database (H2, HSQL,
or Derby). You can explicitly configure JPA settings by using spri ng. j pa. * properties. For example,
to create and drop tables you can add the following line to your appl i cati on. properti es:

spring.j pa. hi bernate. ddl - aut o=cr eat e- dr op

Note

Hibernate's own internal property name for this (if you happen to remember it better) is
hi ber nat e. hbnRddl . aut 0. You can set it, along with other Hibernate native properties, by
using spring.j pa. properties.* (the prefix is stripped before adding them to the entity
manager). The following line shows an example of setting JPA properties for Hibernate:

spring.jpa.properties. hibernate. gl obal |l y_quoted_i dentifiers=true

The line in the preceding example passes a value of true for the
hi ber nat e. gl obal | y_quot ed_i denti fi er s property to the Hibernate entity manager.

By default, the DDL execution (or validation) is deferred until the Appl i cat i onCont ext has started.
There is also a spri ng. j pa. gener at e- ddl flag, but it is not used if Hibernate auto-configuration is
active, because the ddl - aut o settings are more fine-grained.

Open EntityManager in View

If you are running a web application, Spring Boot by default registers
OpenEnt i t yManager I nVi ewl nt er cept or to apply the “Open EntityManager in View” pattern, to
allow for lazy loading in web views. If you do not want this behavior, you should setspri ng. j pa. open-
i n-viewtofal seinyourapplication. properties.

29.4 Spring Data JDBC

Spring Data includes repository support for JDBC and will automatically generate SQL for the methods
on Cr udReposi t ory. For more advanced queries, a @Quer y annotation is provided.

Spring Boot will auto-configure Spring Data’s JDBC repositories when the necessary dependencies
are on the classpath. They can be added to your project with a single dependency on spri ng- boot -
starter-data-jdbc. If necessary, you can take control of Spring Data JDBC'’s configuration by
adding the @nabl eJdbcReposi tori es annotation or a JdbcConfi gur ati on subclass to your
application.

2.1.0.BUILD-SNAPSHOT Spring Boot 114

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/orm/jpa/support/OpenEntityManagerInViewInterceptor.html

Spring Boot Reference Guide

Tip

For complete details of Spring Data JDBC, please refer to the reference documentation.

29.5 Using H2's Web Console

The H2 database provides a browser-based console that Spring Boot can auto-configure for you. The
console is auto-configured when the following conditions are met:

* You are developing a servlet-based web application.
* com h2dat abase: h2 is on the classpath.

* You are using Spring Boot's developer tools.

Tip

If you are not using Spring Boot's developer tools but would still like to make use of H2’'s console,
you can configure the spri ng. h2. consol e. enabl ed property with a value of t r ue.

Note

The H2 console is only intended for use during development, so you should take care to ensure
that spri ng. h2. consol e. enabl ed is not setto t r ue in production.

Changing the H2 Console’s Path

By default, the console is available at / h2- consol e. You can customize the console’s path by using
the spri ng. h2. consol e. pat h property.

29.6 Using jOOQ

Java Object Oriented Querying (JOOQ) is a popular product from Data Geekery which generates Java
code from your database and lets you build type-safe SQL queries through its fluent API. Both the
commercial and open source editions can be used with Spring Boot.

Code Generation

In order to use jOOQ type-safe queries, you need to generate Java classes from your database schema.
You can follow the instructions in the JOOQ user manual. If you use the j 00g- codegen- maven plugin
and you also use the spri ng- boot - st art er - par ent “parent POM”, you can safely omit the plugin’s
<ver si on> tag. You can also use Spring Boot-defined version variables (such as h2. ver si on) to
declare the plugin’s database dependency. The following listing shows an example:

<pl ugi n>
<groupl d>org. j oog</ gr oupl d>
<artifactld>j ooq- codegen-maven</artifact!|d>

<executi ons>

</ executi ons>
<dependenci es>

<dependency>
<gr oupl d>com h2dat abase</ gr oupl! d>
<artifactld>h2</artifactld>

<ver si on>${ h2. ver si on} </ ver si on>

2.1.0.BUILD-SNAPSHOT Spring Boot 115

https://projects.spring.io/spring-data-jdbc/
http://www.h2database.com
http://www.h2database.com/html/quickstart.html#h2_console
http://www.jooq.org/
http://www.datageekery.com/
https://www.jooq.org/doc/3.11.5/manual-single-page/#jooq-in-7-steps-step3

Spring Boot Reference Guide

</ dependency>
</ dependenci es>
<configuration>
<j dbc>
<driver>org. h2. Driver</driver>
<ur| >j dbc: h2: ~/ your dat abase</ ur | >
</jdbc>
<gener at or >

</ gener at or >
</ configuration>
</ pl ugi n>

Using DSLContext

The fluent API offered by jOOQ is initiated through the or g. j ooq. DSLCont ext interface. Spring Boot
auto-configures a DSLCont ext as a Spring Bean and connects it to your application Dat aSour ce. To
use the DSLCont ext , you can @\ut owi r e it, as shown in the following example:

@onponent
public class JoogExanpl e inplenents CommandLi neRunner {

private final DSLContext create;

@\ut owi r ed
publ i ¢ JoogExanpl e(DSLCont ext dsl Context) {
this.create = dsl Context;

}

Tip
The jOOQ manual tends to use a variable named cr eat e to hold the DSLCont ext .

You can then use the DSLCont ext to construct your queries, as shown in the following example:

public List<GegorianCal endar> aut horsBor nAfter1980() {
return this.create. sel ect Fron{ AUTHOR)
. wher e(AUTHOR. DATE_OF_BI RTH. gr eat er Than(new G egor i anCal endar (1980, 0, 1)))
. f et ch(AUTHOR. DATE_OF_BI RTH) ;
}

JOOQ SQL Dialect

Unless the spri ng. j 00q. sql - di al ect property has been configured, Spring Boot determines the
SQL dialect to use for your datasource. If Spring Boot could not detect the dialect, it uses DEFAULT.

Note

Spring Boot can only auto-configure dialects supported by the open source version of jOOQ.

Customizing jOOQ

More advanced customizations can be achieved by defining your own @ean definitions, which is used
when the jOOQ Confi gur ati on is created. You can define beans for the following jOOQ Types:

e Connecti onProvi der

 Execut or Provi der

2.1.0.BUILD-SNAPSHOT Spring Boot 116

Spring Boot Reference Guide

* Transacti onProvi der

* Recor dMapper Provi der

* Recor dUnmapper Provi der

* RecordLi st ener Provi der

* Execut eLi st ener Provi der

* VisitListenerProvider

* Transacti onLi st ener Provi der

You can also create your own or g. j 00q. Conf i gur ati on @ean if you want to take complete control
of the jOOQ configuration.

2.1.0.BUILD-SNAPSHOT Spring Boot 117

Spring Boot Reference Guide

30. Working with NoSQL Technologies

Spring Data provides additional projects that help you access a variety of NoSQL technologies,
including: MongoDB, Neo4J, Elasticsearch, Solr, Redis, Gemfire, Cassandra, Couchbase and LDAP.
Spring Boot provides auto-configuration for Redis, MongoDB, Neo4j, Elasticsearch, Solr Cassandra,
Couchbase, and LDAP. You can make use of the other projects, but you must configure them yourself.
Refer to the appropriate reference documentation at projects.spring.io/spring-data.

30.1 Redis

Redis is a cache, message broker, and richly-featured key-value store. Spring Boot offers basic auto-
configuration for the Lettuce and Jedis client libraries and the abstractions on top of them provided by
Spring Data Redis.

There is a spring-boot-starter-data-redis “Starter” for collecting the dependencies in a
convenient way. By default, it uses Lettuce. That starter handles both traditional and reactive
applications.

Tip

we also provide a spri ng- boot - st art er - dat a- r edi s-r eact i ve “Starter” for consistency
with the other stores with reactive support.

Connecting to Redis

You can inject an auto-configured Redi sConnecti onFact ory, Stri ngRedi sTenpl at e, or vanilla
Redi sTenpl at e instance as you would any other Spring Bean. By default, the instance tries to connect
to a Redis server at | ocal host : 6379. The following listing shows an example of such a bean:

@onponent
public class MyBean {

private StringRedi sTenplate tenpl ate;
@A\ut owi r ed
public MyBean(StringRedi sTenpl ate tenplate) {

this.tenplate = tenplate;
}

...

Tip

You can also register an arbitrary number of beans that implement
Lettuced i ent Confi gurati onBuil der Cust om zer for more advanced customizations. If
you use Jedis, Jedi sCl i ent Confi gurati onBui | der Cust oni zer is also available.

If you add your own @ean of any of the auto-configured types, it replaces the default (except in the
case of Redi sTenpl at e, when the exclusion is based on the bean name, r edi sTenpl at e, not its
type). By default, if cormons- pool 2 is on the classpath, you get a pooled connection factory.

2.1.0.BUILD-SNAPSHOT Spring Boot 118

https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-elasticsearch/
https://projects.spring.io/spring-data-solr/
https://projects.spring.io/spring-data-redis/
https://projects.spring.io/spring-data-gemfire/
https://projects.spring.io/spring-data-cassandra/
https://projects.spring.io/spring-data-couchbase/
https://projects.spring.io/spring-data-ldap/
https://projects.spring.io/spring-data
http://redis.io/
https://github.com/lettuce-io/lettuce-core/
https://github.com/xetorthio/jedis/
https://github.com/spring-projects/spring-data-redis
https://github.com/lettuce-io/lettuce-core/

Spring Boot Reference Guide

30.2 MongoDB

MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead
of traditional table-based relational data. Spring Boot offers several conveniences for working with
MongoDB, including the spri ng- boot - st art er - dat a- nongodb and spri ng- boot -starter-
dat a- nongodb- r eact i ve “Starters”.

Connecting to a MongoDB Database

To access Mongo databases, you can inject an auto-configured
or g. spri ngf ramewor k. dat a. nrongodb. MongoDbFact ory. By default, the instance tries to
connect to a MongoDB server at nongodb: / /| ocal host/t est The following example shows how
to connect to a MongoDB database:

i nport org.springfranework. dat a. nongodb. MongoDbFact ory;
i nport com nongodb. DB;

@onponent
public class MyBean {

private final MngoDbFactory nongo;

@\ut owi r ed
publ i ¢ MyBean(MongoDbFact ory nobngo) {
t hi s. nongo = nongo;

}

...

public void exanple() {
DB db = npbngo. get Db();
...

}

You can set the spri ng. dat a. nrongodb. uri property to change the URL and configure additional
settings such as the replica set, as shown in the following example:

spring. dat a. nongodb. uri =nmongodb: / / user: secr et @ongol. exanpl e. com 12345, nongo2. exanpl e. com 23456/ t est

Alternatively, as long as you use Mongo 2.x, you can specify a host /port . For example, you might
declare the following settings in your appl i cati on. properti es:

spring. dat a. nrongodb. host =nongoser ver
spring. dat a. nrongodb. port =27017

If you have defined your own Mngodient, it will be used to auto-configure a suitable
MongoDbFact ory. Bothcom nongodb. Mongod i ent and com nongodb. cl i ent. Mongod i ent
are supported.

Note

If you use the Mongo 3.0 Java driver, spring.data. nongodb. host
and spri ng. dat a. nrongodb. port are not supported. In such cases,
spring. dat a. nongodb. uri should be used to provide all of the configuration.

2.1.0.BUILD-SNAPSHOT Spring Boot 119

http://www.mongodb.com/

Spring Boot Reference Guide

Tip

If spri ng. dat a. nongodb. port is not specified, the default of 27017 is used. You could delete
this line from the example shown earlier.

Tip

If you do not use Spring Data Mongo, you caninjectcom nmongodb. Mongod i ent beansinstead
of using MongoDbFact ory. If you want to take complete control of establishing the MongoDB
connection, you can also declare your own MongoDbFact ory or MongoC i ent bean.

Note

If you are using the reactive driver, Netty is required for SSL. The auto-configuration configures this
factory automatically if Netty is available and the factory to use hasn’t been customized already.

MongoTemplate

Spring Data MongoDB provides a MongoTenpl at e class that is very similar in its design to Spring’s
JdbcTenpl at e. As with JdbcTenpl at e, Spring Boot auto-configures a bean for you to inject the
template, as follows:

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. dat a. nongodb. cor e. MongoTenpl at e;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class M/Bean {

private final MngoTenpl ate nongoTenpl at e;
@\wut owi r ed
publ i c MyBean(MngoTenpl ate nongoTenpl ate) {

this. nongoTenpl ate = nongoTenpl at e;

}

N/

See the MongoQOper at i ons Javadoc for complete details.
Spring Data MongoDB Repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed automatically, based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure. You
could take the JPA example from earlier and, assuming that Ci t y is now a Mongo data class rather
than a JPA @nt i ty, it works in the same way, as shown in the following example:

package com exanpl e. nyapp. donai n;

i nport org.springfranework. dat a. donai n. *;
i nport org.springfranework. data.repository.*;

public interface CityRepository extends Repository<City, Long> {

Page<Ci ty> findAl | (Pageabl e pageabl e);

2.1.0.BUILD-SNAPSHOT Spring Boot 120

https://projects.spring.io/spring-data-mongodb/
https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoTemplate.html
https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoOperations.html

Spring Boot Reference Guide

City findByNameAndSt at eAl | I gnoringCase(String name, String state);

}

Tip

You can customize document scanning locations by using the @nt i t yScan annotation.
Tip

For complete details of Spring Data MongoDB, including its rich object mapping technologies,
refer to its reference documentation.

Embedded Mongo

Spring Boot offers auto-configuration for Embedded Mongo. To use it in your Spring Boot application,
add a dependency on de. f | apdoodl| e. enbed: de. f| apdoodl| e. enbed. nongo.

The port that Mongo listens on can be configured by setting the spri ng. dat a. nongodb. port
property. To use a randomly allocated free port, use a value of 0. The Mongod i ent created by
MongoAut oConf i gur at i on is automatically configured to use the randomly allocated port.

Note

If you do not configure a custom port, the embedded support uses a random port (rather than
27017) by default.

If you have SLF4J on the classpath, the output produced by Mongo is automatically routed to a logger
named or g. spri ngf ramewor k. boot . aut oconfi gur e. nongo. enbedded. EnbeddedMongo.

You can declare your own | MongodConfi g and | Runt i meConf i g beans to take control of the Mongo
instance’s configuration and logging routing.

30.3 Neo4;

Neo4j is an open-source NoSQL graph database that uses a rich data model of nodes connected
by first class relationships, which is better suited for connected big data than traditional RDBMS
approaches. Spring Boot offers several conveniences for working with Neo4j, including the spri ng-
boot - st art er - dat a- neo4j “Starter”.

Connecting to a Neo4j Database

To access a Neodj server, you can inject an auto-configured or g. neo4j . ogm sessi on. Sessi on.
By default, the instance tries to connect to a Neo4j server at | ocal host : 7687 using the Bolt protocol.
The following example shows how to inject a Neo4j Sessi on:

@onponent
public class MyBean {

private final Session session;
@\ut owi r ed

publ i ¢ MyBean(Sessi on session) {
this.session = session;

2.1.0.BUILD-SNAPSHOT Spring Boot 121

https://projects.spring.io/spring-data-mongodb/
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
http://neo4j.com/

Spring Boot Reference Guide

...

}

You can configure the uri and credentials to use by setting the spri ng. dat a. neo4j . * properties, as
shown in the following example:

spring. data. neo4j . uri=bolt://nmy-server: 7687
spring. dat a. neo4j . user nane=neo4j
spring. dat a. neo4j . passwor d=secr et

You can take full control over the session creation by adding a
or g. neo4j . ogm confi g. Confi gurati on @ean. Also, adding a @ean of type Sessi onFact ory
disables the auto-configuration and gives you full control.

Using the Embedded Mode

If you add or g. neodj : neo4j - ogm enbedded- dri ver to the dependencies of your application,
Spring Boot automatically configures an in-process embedded instance of Neo4j that does not persist
any data when your application shuts down.

Note

As the embedded Neo4j OGM driver does not provide the Neo4j kernel itself, you have to declare
or g. neo4j : neo4j as dependency yourself. Refer to the Neo4j OGM documentation for a list
of compatible versions.

The embedded driver takes precedence over the other drivers when there are multiple
drivers on the classpath. You can explicity disable the embedded mode by setting
spring. dat a. neo4j . enbedded. enabl ed=f al se.

Data Neo4j Tests automatically make use of an embedded Neo4j instance if the embedded driver and
Neo4j kernel are on the classpath as described above.

Note

You can enable persistence for the embedded mode by providing a path to a database file in your
configuration, e.g. spri ng. dat a. neo4j . uri =file://var/tnp/graph. db.

Neo4jSession

By default, if you are running a web application, the session is bound to the thread for the entire
processing of the request (that is, it uses the "Open Session in View" pattern). If you do not want this
behavior, add the following line to your appl i cati on. properti es file:

spring. dat a. neo4j . open-i n-vi ew=f al se

Spring Data Neo4j Repositories
Spring Data includes repository support for Neo4,.

Spring Data Neo4j shares the common infrastructure with Spring Data JPA as many other Spring
Data modules do. You could take the JPA example from earlier and define Ci ty as Neo4j OGM

2.1.0.BUILD-SNAPSHOT Spring Boot 122

https://neo4j.com/docs/ogm-manual/current/reference/#reference:getting-started

Spring Boot Reference Guide

@NodeEnt i ty rather than JPA @ntity and the repository abstraction works in the same way, as
shown in the following example:

package com exanpl e. myapp. domai n;

i nport java.util.Optional;

i nport org.springfranework. dat a. neo4j . repository.*;

public interface G tyRepository extends Neo4j Repository<Cty, Long> {

Optional <Ci ty> findOneByNaneAndState(String name, String state);

The spring-boot-starter-data-neod4j “Starter” enables the repository support as well as
transaction management. You can customize the locations to look for repositories and entities by using
@nabl eNeo4j Reposi tori es and @nt i t yScan respectively on a @onf i gur at i on-bean.

Tip

For complete details of Spring Data Neo4j, including its object mapping technologies, refer to the
reference documentation.

30.4 Gemfire

Spring Data Gemfire provides convenient Spring-friendly tools for accessing the Pivotal Gemfire data
management platform. Thereisaspri ng- boot - st art er - dat a- genf i r e “Starter” for collecting the
dependencies in a convenient way. There is currently no auto-configuration support for Gemfire, but
you can enable Spring Data Repositories with a single annotation: @nabl eGenf i r eReposi t ori es.

30.5 Solr

Apache Solr is a search engine. Spring Boot offers basic auto-configuration for the Solr 5 client library
and the abstractions on top of it provided by Spring Data Solr. There is a spri ng- boot -starter -
dat a- sol r “Starter” for collecting the dependencies in a convenient way.

Connecting to Solr

You can inject an auto-configured Sol r Cl i ent instance as you would any other Spring bean. By
default, the instance tries to connect to a server at | ocal host : 8983/ sol r . The following example
shows how to inject a Solr bean:

@onponent
public class MyBean {

private SolrCient solr;
@\ut owi r ed
public MyBean(Solrdient solr) {

this.solr = solr;

}

N/

If you add your own @ean of type Sol r O i ent , it replaces the default.

2.1.0.BUILD-SNAPSHOT Spring Boot 123

https://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-gemfire
https://pivotal.io/big-data/pivotal-gemfire#details
https://github.com/spring-projects/spring-data-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.java
http://lucene.apache.org/solr/
https://github.com/spring-projects/spring-data-solr
http://localhost:8983/solr

Spring Boot Reference Guide

Spring Data Solr Repositories

Spring Data includes repository support for Apache Solr. As with the JPA repositories discussed earlier,
the basic principle is that queries are automatically constructed for \ you based on method names.

In fact, both Spring Data JPA and Spring Data Solr share the same common infrastructure. You could
take the JPA example from earlier and, assuming that Ci t y is now a @bol r Docunent class rather
than a JPA @nt i ty, it works in the same way.

Tip

For complete details of Spring Data Solr, refer to the reference documentation.

30.6 Elasticsearch

Elasticsearch is an open source, distributed, RESTful search and analytics engine. Spring Boot offers
basic auto-configuration for Elasticsearch.

Spring Boot supports several HTTP clients:
» The official Java "Low Level" and "High Level" REST clients
» Jest

The transport client is still being used by Spring Data Elasticsearch, which you can start using with the
spring-boot - starter-dat a- el asti csear ch “Starter”.

Connecting to Elasticsearch by REST clients

Elasticsearch ships two different REST clients that you can use to query a cluster: the "Low Level" client
and the "High Level" client.

If you havetheor g. el asti csearch.client:elasticsearch-rest-client dependencyonthe
classpath, Spring Boot will auto-configure and register a Rest Cl i ent bean that by default targets
| ocal host : 9200. You can further tune how Rest d i ent is configured, as shown in the following
example:

spring. el asticsearch.rest.uris=http://search. exanpl e. com 9200
spring. el asti csearch. rest. user nane=user
spring. el asticsearch.rest. password=secret

You can also register an arbitrary number of beans that implement Rest C i ent Bui | der Cust omi zer
for more advanced customizations. To take full control over the registration, define aRest Cl i ent bean.

If you have the org. el asticsearch.client:elasticsearch-rest-high-Ilevel-client
dependency on the classpath, Spring Boot will auto-configure a Rest Hi ghLevel d i ent , which wraps
any existing Rest Cl i ent bean, reusing its HTTP configuration.

Connecting to Elasticsearch by Using Jest

If you have Jest on the classpath, you can inject an auto-configured Jest C i ent that by default
targets | ocal host : 9200. You can further tune how the client is configured, as shown in the following
example:

spring. el asticsearch.jest.uris=http://search. exanpl e. com 9200

2.1.0.BUILD-SNAPSHOT Spring Boot 124

https://projects.spring.io/spring-data-solr/
https://www.elastic.co/products/elasticsearch
https://github.com/searchbox-io/Jest
https://github.com/spring-projects/spring-data-elasticsearch
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/index.html
http://localhost:9200
http://localhost:9200

Spring Boot Reference Guide

spring. el asticsearch. jest.read-tinmeout=10000
spring. el asti csearch. j est. usernane=user
spring. el asticsearch. jest. password=secret

You can also register an arbitrary number of beans that implement
Ht t pCl i ent Confi gBui | der Cust omi zer for more advanced customizations. The following
example tunes additional HTTP settings:

static class HtpSettingsCustom zer inplenents HtpCientConfigBuilderCustom zer {

@verride
public void custom ze(H tpd ientConfig.Builder builder) {
bui | der. maxTot al Connecti on(100) . def aul t MaxTot al Connect i onPer Rout e(5) ;

}
}

To take full control over the registration, define a Jest Cl i ent bean.

Connecting to Elasticsearch by Using Spring Data

To connect to Elasticsearch, you must provide the address of one or more cluster nodes. The address
can be specified by setting the spring. dat a. el asti csearch. cl ust er-nodes property to a
comma-separated host : port list. With this configuration in place, an El asti csear chTenpl at e or
Transport Cl i ent can be injected like any other Spring bean, as shown in the following example:

spring. data. el asti csearch. cl ust er-nodes=l ocal host: 9300

@onponent
public class MyBean {

private final ElasticsearchTenplate tenplate;
public MyBean(El asticsearchTenpl ate tenplate) {

this.tenplate = tenplate;
}

N/

}

If you add your own El asti csear chTenpl at e or Tr ansport Cl i ent @ean, it replaces the default.
Spring Data Elasticsearch Repositories

Spring Data includes repository support for Elasticsearch. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data Elasticsearch share the same common infrastructure. You
could take the JPA example from earlier and, assuming that G t y is now an Elasticsearch @ocunent
class rather than a JPA @nti ty, it works in the same way.

Tip

For complete details of Spring Data Elasticsearch, refer to the reference documentation.

30.7 Cassandra

Cassandra is an open source, distributed database management system designed to handle large
amounts of data across many commodity servers. Spring Boot offers auto-configuration for Cassandra

2.1.0.BUILD-SNAPSHOT Spring Boot 125

https://docs.spring.io/spring-data/elasticsearch/docs/
http://cassandra.apache.org/

Spring Boot Reference Guide

and the abstractions on top of it provided by Spring Data Cassandra. There is a spri ng- boot -
starter-dat a- cassandr a “Starter” for collecting the dependencies in a convenient way.

Connecting to Cassandra

You can inject an auto-configured Cassandr aTenpl at e or a Cassandra Sessi on instance as you
would with any other Spring Bean. The spri ng. dat a. cassandr a. * properties can be used to
customize the connection. Generally, you provide keyspace- nane and cont act - poi nt s properties,
as shown in the following example:

spring. dat a. cassandr a. keyspace- nane=nykeyspace
spring. dat a. cassandr a. cont act - poi nt s=cassandr ahost 1, cassandr ahost 2

The following code listing shows how to inject a Cassandra bean:

@onponent
public class MyBean {

private CassandraTenpl ate tenpl ate;

@A\ut owi red

publ i ¢ MyBean(CassandraTenpl ate tenpl ate) {
this.tenplate = tenpl ate;

}

...

If you add your own @ean of type Cassandr aTenpl at e, it replaces the default.

Spring Data Cassandra Repositories

Spring Data includes basic repository support for Cassandra. Currently, this is more limited than the
JPA repositories discussed earlier and needs to annotate finder methods with @uery.

Tip

For complete details of Spring Data Cassandra, refer to the reference documentation.

30.8 Couchbase

Couchbase is an open-source, distributed, multi-model NoSQL document-oriented database that
is optimized for interactive applications. Spring Boot offers auto-configuration for Couchbase
and the abstractions on top of it provided by Spring Data Couchbase. There are spri ng-
boot - st art er - dat a- couchbase and spri ng-boot-starter-data-couchbase-reactive
“Starters” for collecting the dependencies in a convenient way.

Connecting to Couchbase

You can get a Bucket and C ust er by adding the Couchbase SDK and some configuration. The
spring. couchbase. * properties can be used to customize the connection. Generally, you provide
the bootstrap hosts, bucket name, and password, as shown in the following example:

spring. couchbase. boot st rap- host s=ny- host -1, 192. 168. 1. 123
spring. couchbase. bucket . nane=ny- bucket
spring. couchbase. bucket . passwor d=secr et

2.1.0.BUILD-SNAPSHOT Spring Boot 126

https://github.com/spring-projects/spring-data-cassandra
https://docs.spring.io/spring-data/cassandra/docs/
http://www.couchbase.com/
https://github.com/spring-projects/spring-data-couchbase

Spring Boot Reference Guide

Tip
You need to provide at least the bootstrap host(s), in which case the bucket name
is default and the password is an empty String. Alternatively, you can define your

own or g. spri ngfranmewor k. dat a. couchbase. confi g. CouchbaseConfi gurer @Bean
to take control over the whole configuration.

It is also possible to customize some of the CouchbaseEnvi r onnent settings. For instance, the
following configuration changes the timeout to use to open a new Bucket and enables SSL support:

spring. couchbase. env. ti meouts. connect =3000
spring. couchbase. env. ssl . key-store=/1ocati on/ of / keystore. j ks
spring. couchbase. env. ssl . key- st or e- passwor d=secr et

Check the spri ng. couchbase. env. * properties for more details.

Spring Data Couchbase Repositories

Spring Data includes repository support for Couchbase. For complete details of Spring Data Couchbase,
refer to the reference documentation.

You can inject an auto-configured CouchbaseTenpl at e instance as you would with any other Spring
Bean, provided a default CouchbaseConfi gurer is available (which happens when you enable
Couchbase support, as explained earlier).

The following examples shows how to inject a Couchbase bean:

@onponent
public class MyBean {

private final CouchbaseTenpl ate tenplate;
@\ut owi r ed

publ i ¢ MyBean(CouchbaseTenpl ate tenpl ate) {
this.tenplate = tenpl ate;

}

...

}

There are a few beans that you can define in your own configuration to override those provided by the
auto-configuration:

* A CouchbaseTenpl at e @ean with a name of couchbaseTenpl at e.
« An | ndexManager @ean with a name of couchbasel ndexManager .
* A Cust onConver si ons @ean with a name of couchbaseCust onConver si ons.

To avoid hard-coding those names in your own config, you can reuse BeanNanes provided by Spring
Data Couchbase. For instance, you can customize the converters to use, as follows:

@onfiguration
public class SoneConfiguration {

@ean(BeanNanes. COUCHBASE_CUSTOM CONVERSI ONS)
publ i ¢ CustonConversi ons mnyCust onConversions() {
return new CustonConversions(...);

}

...

2.1.0.BUILD-SNAPSHOT Spring Boot 127

https://docs.spring.io/spring-data/couchbase/docs/current/reference/html/

Spring Boot Reference Guide

Tip
If you want to fully bypass the auto-configuration for
Spring Data Couchbase, provide your own implementation of

org. spri ngframewor k. dat a. couchbase. confi g. Abstract CouchbaseDat aConf i gur ati on.

30.9 LDAP

LDAP (Lightweight Directory Access Protocol) is an open, vendor-neutral, industry standard application
protocol for accessing and maintaining distributed directory information services over an IP network.
Spring Boot offers auto-configuration for any compliant LDAP server as well as support for the
embedded in-memory LDAP server from UnboundID.

LDAP abstractions are provided by Spring Data LDAP. There is a spri ng- boot - st art er - dat a-
| dap “Starter” for collecting the dependencies in a convenient way.

Connecting to an LDAP Server

To connect to an LDAP server, make sure you declare a dependency on the spri ng- boot - st art er -
dat a- | dap “Starter” or spring-| dap-core and then declare the URLs of your server in your
application.properties, as shown in the following example:

spring. | dap.urls=ldap://nyserver: 1235
spring. | dap. user nane=adni n
spring. | dap. passwor d=secr et

If you need to customize connection settings, you can use the spring. | dap. base and
spring. | dap. base- envi ronnent properties.

An LdapCont ext Sour ce is auto-configured based on these settings. If you need to customize
it, for instance to use a Pool edCont ext Source, you can still inject the auto-configured
LdapCont ext Sour ce. Make sure to flag your customized Cont ext Sour ce as @ i mar y so that the
auto-configured LdapTenpl at e uses it.

Spring Data LDAP Repositories

Spring Data includes repository support for LDAP. For complete details of Spring Data LDAP, refer to
the reference documentation.

You can also inject an auto-configured LdapTenpl at e instance as you would with any other Spring
Bean, as shown in the following example:

@Conponent
public class MyBean {

private final LdapTenplate tenplate;
@\ut owi r ed
publ i c MyBean(LdapTenpl ate tenplate) {

this.tenplate = tenpl ate;
}

...

2.1.0.BUILD-SNAPSHOT Spring Boot 128

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://www.ldap.com/unboundid-ldap-sdk-for-java
https://github.com/spring-projects/spring-data-ldap
https://docs.spring.io/spring-data/ldap/docs/1.0.x/reference/html/

Spring Boot Reference Guide

Embedded In-memory LDAP Server

For testing purposes, Spring Boot supports auto-configuration of an in-memory LDAP server from
UnboundID. To configure the server, add a dependency to com unboundi d: unboundi d- | dapsdk
and declare a base- dn property, as follows:

spring. | dap. enbedded. base- dn=dc=spri ng, dc=i o

Note

It is possible to define multiple base-dn values, however, since distinguished names usually
contain commas, they must be defined using the correct notation.

In yaml files, you can use the yaml list notation:
spring. | dap. enbedded. base- dn:

- dc=spring, dc=io
- dc=pivotal,dc=io

In properties files, you must include the index as part of the property name:

spring. | dap. enbedded. base- dn[0] =dc=spri ng, dc=i o
spring. | dap. enbedded. base- dn[1] =dc=pi vot al , dc=i o

By default, the server starts on a random port and triggers the regular LDAP support. There is no need
to specify a spri ng. | dap. ur | s property.

If there is a schema. | di f file on your classpath, it is used to initialize the server. If you want to load
the initialization script from a different resource, you can also use the spri ng. | dap. enbedded. | di f

property.

By default, a standard schema is used to validate LDI F files. You can turn off validation altogether by
settingthe spri ng. | dap. enbedded. val i dat i on. enabl ed property. If you have custom attributes,
you can use spri ng. | dap. enbedded. val i dati on. schena to define your custom attribute types
or object classes.

30.10 InfluxDB

InfluxDB is an open-source time series database optimized for fast, high-availability storage and retrieval
of time series data in fields such as operations monitoring, application metrics, Internet-of-Things sensor
data, and real-time analytics.

Connecting to InfluxDB

Spring Boot auto-configures an | nf | uxDB instance, provided the i nf | uxdb-j ava client is on the
classpath and the URL of the database is set, as shown in the following example:

spring.influx.url=http://172.0.0.1: 8086

If the connection to InfluxDB requires a user and password, you can set the spri ng. i nfl ux. user
and spri ng. i nfl ux. passwor d properties accordingly.

InfluxDB relies on OkHttp. If you need to tune the http client | nf | uxDB uses behind the scenes, you
can register an OkHt t pCl i ent . Bui | der bean.

2.1.0.BUILD-SNAPSHOT Spring Boot 129

https://www.ldap.com/unboundid-ldap-sdk-for-java
https://www.influxdata.com/

Spring Boot Reference Guide

31. Caching

The Spring Framework provides support for transparently adding caching to an application. At its core,
the abstraction applies caching to methods, thus reducing the number of executions based on the
information available in the cache. The caching logic is applied transparently, without any interference to
the invoker. Spring Boot auto-configures the cache infrastructure as long as caching support is enabled
via the @nabl eCachi ng annotation.

Note

Check the relevant section of the Spring Framework reference for more details.

In a nutshell, adding caching to an operation of your service is as easy as adding the relevant annotation
to its method, as shown in the following example:

i nport org.springfranmework. cache. annot ati on. Cacheabl e;
i mport org.springframework. stereotype. Conponent ;

@onponent
public class MathService {

@Cacheabl e(" pi Deci mal s")

public int conputePiDecinmal (int i) {
I,

}

This example demonstrates the use of caching on a potentially costly operation. Before invoking
conput ePi Deci nal , the abstraction looks for an entry in the pi Deci mal s cache that matches the i
argument. If an entry is found, the content in the cache is immediately returned to the caller, and the
method is not invoked. Otherwise, the method is invoked, and the cache is updated before returning
the value.

Caution

You can also use the standard JSR-107 (JCache) annotations (such as @acheResul t)
transparently. However, we strongly advise you to not mix and match the Spring Cache and
JCache annotations.

If you do not add any specific cache library, Spring Boot auto-configures a simple provider that uses
concurrent maps in memory. When a cache is required (such as pi Deci nal s in the preceding
example), this provider creates it for you. The simple provider is not really recommended for production
usage, but it is great for getting started and making sure that you understand the features. When you
have made up your mind about the cache provider to use, please make sure to read its documentation
to figure out how to configure the caches that your application uses. Nearly all providers require you
to explicitly configure every cache that you use in the application. Some offer a way to customize the
default caches defined by the spri ng. cache. cache- nanes property.

Tip

It is also possible to transparently update or evict data from the cache.

2.1.0.BUILD-SNAPSHOT Spring Boot 130

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/integration.html#cache-annotations-put
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/integration.html#cache-annotations-evict

Spring Boot Reference Guide

31.1 Supported Cache Providers

The cache abstraction does not provide an actual store and relies on abstraction materialized by
the or g. spri ngf ramewor k. cache. Cache and or g. spri ngf r amewor k. cache. CacheManager
interfaces.

If you have not defined a bean of type CacheManager or a CacheResol ver named cacheResol ver
(see Cachi ngConf i gur er), Spring Boot tries to detect the following providers (in the indicated order):

1. Generic

2. JCache (JSR-107) (EhCache 3, Hazelcast, Infinispan, and others)

3. EhCache 2.x
4. Hazelcast

5. Infinispan

6. Couchbase

7. Redis

8. Caffeine
9. Simple
Tip

It is also possible to force a particular cache provider by setting the spri ng. cache. type
property. Use this property if you need to disable caching altogether in certain environment (such
as tests).

Tip

Use the spri ng- boot - st art er - cache “Starter” to quickly add basic caching dependencies.
The starter brings in spri ng- cont ext - support . If you add dependencies manually, you must
include spri ng- cont ext - support inorderto use the JCache, EhCache 2.x, or Guava support.

If the CacheManager is auto-configured by Spring Boot, you can further tune its configuration before it
is fully initialized by exposing a bean that implements the CacheManager Cust oni zer interface. The
following example sets a flag to say that null values should be passed down to the underlying map:

@Bean
publ i ¢ CacheManager Cust om zer <Concur r ent MapCacheManager > cacheManager Cust omi zer () {
return new CacheManager Cust om zer <Concur r ent MapCacheManager >() {

@verride

public void custom ze(Concurrent MapCacheManager cacheManager) {

cacheManager . set Al | owmNul | Val ues(f al se);

}

Iz

}

Note

In the preceding example, an auto-configured Concur r ent MapCacheManager is expected. If
that is not the case (either you provided your own config or a different cache provider was auto-

2.1.0.BUILD-SNAPSHOT Spring Boot 131

https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html

Spring Boot Reference Guide

configured), the customizer is not invoked at all. You can have as many customizers as you want,
and you can also order them by using @ der or Or der ed.

Generic

Generic caching is used if the context defines at least one or g. spri ngf ranewor k. cache. Cache
bean. A CacheManager wrapping all beans of that type is created.

JCache (JSR-107)

JCache is bootstrapped through the presence of a j avax. cache. spi. Cachi ngProvi der on
the classpath (that is, a JSR-107 compliant caching library exists on the classpath), and the
JCacheCacheManager is provided by the spring-boot-starter-cache “Starter”. Various
compliant libraries are available, and Spring Boot provides dependency management for Ehcache 3,
Hazelcast, and Infinispan. Any other compliant library can be added as well.

It might happen that more than one provider is present, in which case the provider must be explicitly
specified. Even if the JSR-107 standard does not enforce a standardized way to define the location of
the configuration file, Spring Boot does its best to accommodate setting a cache with implementation
details, as shown in the following example:

Only necessary if nore than one provider is present
spring. cache. jcache. provi der=com acre. MyCachi ngPr ovi der
spring. cache. j cache. confi g=cl asspat h: acme. xm

Note

When a cache library offers both a native implementation and JSR-107 support, Spring Boot
prefers the JSR-107 support, so that the same features are available if you switch to a different
JSR-107 implementation.

Tip

Spring Boot has general support for Hazelcast. If a single Hazel castl nstance
is available, it is automatically reused for the CacheManager as well, unless the
spring. cache. j cache. confi g property is specified.

There are two ways to customize the underlying j avax. cache. cacheManager :

» Caches can be created on startup by settingthe spri ng. cache. cache- nanes property. If a custom
j avax. cache. confi gurati on. Confi gurati on bean is defined, it is used to customize them.

e org.springfranework. boot . aut oconfi gure. cache. JCacheManager Cust om zer beans
are invoked with the reference of the CacheManager for full customization.

Tip

If a standard j avax. cache. CacheManager bean is defined, it is wrapped automatically in an
org. spri ngf ramewor k. cache. CacheManager implementation that the abstraction expects.
No further customization is applied to it.

2.1.0.BUILD-SNAPSHOT Spring Boot 132

https://jcp.org/en/jsr/detail?id=107

Spring Boot Reference Guide

EhCache 2.x

EhCache 2.x is used if a file named ehcache. xm can be found at the root of the classpath. If EhCache
2.x is found, the EhCacheCacheManager provided by the spri ng- boot - st art er - cache “Starter”
is used to bootstrap the cache manager. An alternate configuration file can be provided as well, as
shown in the following example:

spring. cache. ehcache. confi g=cl asspat h: conf i g/ anot her - confi g. xm

Hazelcast

Spring Boot has general support for Hazelcast. If a Hazel cast | nst ance has been auto-configured,
it is automatically wrapped in a CacheManager .

Infinispan

Infinispan has no default configuration file location, so it must be specified explicitly. Otherwise, the
default bootstrap is used.

spring. cache.infinispan.config=infinispan.xm

Caches can be created on startup by setting the spri ng. cache. cache- nanes property. If a custom
Confi gurati onBui | der bean is defined, it is used to customize the caches.

Note

The support of Infinispan in Spring Boot is restricted to the embedded mode and is quite basic.
If you want more options, you should use the official Infinispan Spring Boot starter instead. See
Infinispan’s documentation for more details.

Couchbase

If the Couchbase Java client and the couchbase- spri ng- cache implementation are available and
Couchbase is configured, a CouchbaseCacheManager is auto-configured. It is also possible to create
additional caches on startup by setting the spri ng. cache. cache- nanes property. These caches
operate on the Bucket that was auto-configured. You can also create additional caches on another
Bucket by using the customizer. Assume you need two caches (cachel and cache2) on the "main”
Bucket and one (cache3) cache with a custom time to live of 2 seconds on the “another” Bucket .
You can create the first two caches through configuration, as follows:

spring. cache. cache- nanes=cachel, cache2

Then you can define a @onf i gur at i on class to configure the extra Bucket and the cache3 cache,
as follows:

@onfiguration
public class CouchbaseCacheConfiguration {

private final Cluster cluster;

publ i ¢ CouchbaseCacheConfi guration(Cl uster cluster) {
this.cluster = cluster;

}

@Bean
publ i ¢ Bucket anot herBucket () {

2.1.0.BUILD-SNAPSHOT Spring Boot 133

http://www.ehcache.org/
http://infinispan.org/
https://github.com/infinispan/infinispan-spring-boot
https://www.couchbase.com/

Spring Boot Reference Guide

return this.cluster.openBucket ("another", "secret");

}

@Bean
publ i ¢ CacheManager Cust om zer <CouchbaseCacheManager > cacheManager Cust om zer () {
return c -> {
c. prepareCache("cache3", CacheBuil der.new nstance(anot her Bucket ())
.W thExpiration(2));

This sample configuration reuses the ust er that was created through auto-configuration.

Redis

If Redis is available and configured, a Redi sCacheManager is auto-configured. It is possible to
create additional caches on startup by setting the spri ng. cache. cache- nanmes property and cache
defaults can be configured by using spri ng. cache. redi s. * properties. For instance, the following
configuration creates cachel and cache2 caches with a time to live of 10 minutes:

spring. cache. cache- nanes=cachel, cache2
spring.cache.redis.tinme-to-1ive=600000

Note

By default, a key prefix is added so that, if two separate caches use the same key, Redis does
not have overlapping keys and cannot return invalid values. We strongly recommend keeping this
setting enabled if you create your own Redi sCacheManager .

Tip

You can take full control of the configuration by adding a Redi sCacheConfi gurati on @ean
of your own. This can be useful if you're looking for customizing the serialization strategy.

Caffeine

Caffeine is a Java 8 rewrite of Guava's cache that supersedes support for Guava. If Caffeine is
present, a Caf f ei neCacheManager (provided by the spri ng- boot - st art er - cache “Starter”) is
auto-configured. Caches can be created on startup by setting the spri ng. cache. cache- nanes
property and can be customized by one of the following (in the indicated order):

1. A cache spec defined by spri ng. cache. caf f ei ne. spec
2. Acom gi t hub. benmanes. caf f ei ne. cache. Caf f ei neSpec bean is defined
3. Acom gi t hub. benmanes. caf f ei ne. cache. Caf f ei ne bean is defined

For instance, the following configuration creates cachel and cache2 caches with a maximum size of
500 and a time to live of 10 minutes

spring. cache. cache- nanes=cachel, cache2
spring. cache. caf f ei ne. spec=maxi munsi ze=500, expi r eAf t er Access=600s

If a com gi t hub. bennanes. caf f ei ne. cache. CacheLoader bean is defined, it is automatically
associated to the Caf f ei neCacheManager . Since the CachelLoader is going to be associated with

2.1.0.BUILD-SNAPSHOT Spring Boot 134

http://redis.io/
https://github.com/ben-manes/caffeine

Spring Boot Reference Guide

all caches managed by the cache manager, it must be defined as CacheLoader <hj ect, Obj ect >.
The auto-configuration ignores any other generic type.

Simple

If none of the other providers can be found, a simple implementation using a Concur r ent HashMap as
the cache store is configured. This is the default if no caching library is present in your application. By
default, caches are created as needed, but you can restrict the list of available caches by setting the
cache- names property. For instance, if you want only cachel and cache2 caches, set the cache-
nanes property as follows:

spring. cache. cache- nanes=cachel, cache2

If you do so and your application uses a cache not listed, then it fails at runtime when the cache is
needed, but not on startup. This is similar to the way the "real" cache providers behave if you use an
undeclared cache.

None

When @nabl eCachi ng is present in your configuration, a suitable cache configuration is expected as
well. If you need to disable caching altogether in certain environments, force the cache type to none to
use a no-op implementation, as shown in the following example:

spring. cache. t ype=none

2.1.0.BUILD-SNAPSHOT Spring Boot 135

Spring Boot Reference Guide

32. Messaging

The Spring Framework provides extensive support for integrating with messaging systems, from
simplified use of the JMS API using Jnms Tenpl at e to a complete infrastructure to receive messages
asynchronously. Spring AMQP provides a similar feature set for the Advanced Message Queuing
Protocol. Spring Boot also provides auto-configuration options for Rabbi t Tenpl at e and RabbitMQ.
Spring WebSocket natively includes support for STOMP messaging, and Spring Boot has support for
that through starters and a small amount of auto-configuration. Spring Boot also has support for Apache
Kafka.

32.1 IMS

The javax.jnms. ConnectionFactory interface provides a standard method of -creating
a javax.jns.Connection for interacting with a JMS broker. Although Spring needs a
Connecti onFact ory to work with JMS, you generally need not use it directly yourself and can
instead rely on higher level messaging abstractions. (See the relevant section of the Spring Framework
reference documentation for details.) Spring Boot also auto-configures the necessary infrastructure to
send and receive messages.

ActiveMQ Support

When ActiveMQ is available on the classpath, Spring Boot can also configure a Connect i onFact ory.
If the broker is present, an embedded broker is automatically started and configured (provided no broker
URL is specified through configuration).

Note

If you use spring-boot-starter-activeny, the necessary dependencies to connect or
embed an ActiveMQ instance are provided, as is the Spring infrastructure to integrate with JMS.

ActiveMQ configuration is controlled by external configuration properties in spri ng. acti veny. *. For
example, you might declare the following section in appl i cati on. properti es:
spring. activeny. broker-url=tcp://192. 168. 1. 210: 9876

spring. activenyg. user =adm n
spring. activeny. passwor d=secr et

By default, a Cachi ngConnect i onFact ory wraps the native Connect i onFact ory with sensible
settings that you can control by external configuration properties in spri ng. j ns. *:

spring.jns. cache. sessi on-cache- si ze=5

If youd rather use native pooling, you can do so by adding a dependency to
or g. nessagi nghub: pool ed-j ns and configuring the JnsPool Connect i onFact ory accordingly,
as shown in the following example:

spring. activeny. pool . enabl ed=true
spring. activeny. pool . max- connect i ons=50

2.1.0.BUILD-SNAPSHOT Spring Boot 136

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/integration.html#jms
http://activemq.apache.org/

Spring Boot Reference Guide

Tip

See ActiveMProperties for more of the supported options. You can also register an
arbitrary number of beans that implement Acti veMXConnecti onFact or yCust omi zer for
more advanced customizations.

By default, ActiveMQ creates a destination if it does not yet exist so that destinations are resolved
against their provided names.

Artemis Support

Spring Boot can auto-configure a Connect i onFact or y when it detects that Artemis is available on the
classpath. If the broker is present, an embedded broker is automatically started and configured (unless
the mode property has been explicitly set). The supported modes are enbedded (to make explicit that
an embedded broker is required and that an error should occur if the broker is not available on the
classpath) and nat i ve (to connect to a broker using the net t y transport protocol). When the latter is
configured, Spring Boot configures a Connect i onFact ory that connects to a broker running on the
local machine with the default settings.

Note

If you use spring-boot-starter-artem s, the necessary dependencies to connect to an
existing Artemis instance are provided, as well as the Spring infrastructure to integrate with
JMS. Adding or g. apache. acti venq: art emni s-j nms-ser ver to your application lets you use
embedded mode.

Artemis configuration is controlled by external configuration properties in spring. artem s. *. For
example, you might declare the following section in appl i cati on. properti es:

spring.artem s. node=native
spring.artem s. host =192. 168. 1. 210
spring.artem s. port=9876
spring.artem s. user=adm n

spring. artem s. passwor d=secr et

When embedding the broker, you can choose if you want to enable persistence and list
the destinations that should be made available. These can be specified as a comma-
separated list to create them with the default options, or you can define bean(s)
of type or g. apache. activeng. artem s.jns. server. confi g. IMSQueueConfi gurati on or
org. apache. acti veny. artem s. j ms. server. confi g. Topi cConfi gurati on, for advanced
gueue and topic configurations, respectively.

By default, a Cachi ngConnect i onFact ory wraps the native Connect i onFact ory with sensible
settings that you can control by external configuration properties in spri ng. j nms. *:

spring.jms. cache. sessi on-cache-si ze=5

If youd rather use native pooling, you can do so by adding a dependency to
or g. nessagi nghub: pool ed-j ns and configuring the JnsPool Connect i onFact ory accordingly,
as shown in the following example:

spring. artem s. pool . enabl ed=true
spring. artem s. pool . max- connecti ons=50

2.1.0.BUILD-SNAPSHOT Spring Boot 137

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java
http://activemq.apache.org/artemis/

Spring Boot Reference Guide

See Art emi sProperti es for more supported options.

No JNDI lookup is involved, and destinations are resolved against their names, using either the nane
attribute in the Artemis configuration or the names provided through configuration.

Using a JNDI ConnectionFactory

If you are running your application in an application server, Spring Boot tries to locate
a JMS ConnectionFactory by using JNDI. By default, the java:/JnsXA and java:/
XAConnect i onFact ory location are checked. You can use the spri ng. j ns. j ndi - nane property
if you need to specify an alternative location, as shown in the following example:

spring.jnms.jndi-name=j ava: / MyConnect i onFact ory
Sending a Message

Spring’s JnsTenpl at e is auto-configured, and you can autowire it directly into your own beans, as
shown in the following example:

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i mport org.springframework.jnms.core.JnsTenpl at e;
i mport org. springframework. st ereot ype. Conponent ;

@Conponent
public class MyBean {

private final JmsTenpl ate jnsTenpl ate;
@\ut owi r ed

public MyBean(JnmsTenpl ate jmsTenpl ate) {
this.jnmsTenpl ate = jnsTenpl at e;

}

...

Note

JnsMessagi ngTenpl at e can be injected in a similar manner. If a Dest i nati onResol ver
or a MessageConvert er bean is defined, it is associated automatically to the auto-configured
JnsTenpl at e.

Receiving a Message

When the JMS infrastructure is present, any bean can be annotated with @nsLi st ener to create
a listener endpoint. If no JnsLi st ener Cont ai ner Fact ory has been defined, a default one is
configured automatically. If a Dest i nati onResol ver or a MessageConvert er beans is defined, it
is associated automatically to the default factory.

By default, the default factory is transactional. If you run in an infrastructure where a
Jt aTransacti onManager is present, it is associated to the listener container by default. If not, the
sessi onTransact ed flag is enabled. In that latter scenario, you can associate your local data store
transaction to the processing of an incoming message by adding @r ansact i onal on your listener
method (or a delegate thereof). This ensures that the incoming message is acknowledged, once the local
transaction has completed. This also includes sending response messages that have been performed
on the same JMS session.

2.1.0.BUILD-SNAPSHOT Spring Boot 138

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisProperties.java
https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/jms/core/JmsMessagingTemplate.html

Spring Boot Reference Guide

The following component creates a listener endpoint on the soneQueue destination:

@Conponent
public class MyBean {

@nslLi stener (destination = "someQueue")

public void processMessage(String content) {
...

}

Tip
See the Javadoc of @nabl eJns for more details.

If you need to create more JnsLi st ener Cont ai ner Fact or y instances or if you want to override the
default, Spring Boot provides a Def aul t JnsLi st ener Cont ai ner Fact or yConf i gur er that you
can use to initialize a Def aul t JnsLi st ener Cont ai ner Fact or y with the same settings as the one
that is auto-configured.

For instance, the following example exposes another factory that uses a specific MessageConvert er:

@onfi guration
static class JmsConfiguration {

@Bean
publ i ¢ Defaul t JnsLi st ener Cont ai ner Fact ory nyFact ory(
Def aul t JnsLi st ener Cont ai ner Fact oryConfi gurer configurer) {
Def aul t InsLi st ener Cont ai ner Factory factory =
new Def aul t InsLi st ener Cont ai ner Factory() ;
configurer.configure(factory, connectionFactory());
factory. set MessageConvert er (nyMessageConverter());
return factory;

Then you can use the factory in any @nsLi st ener -annotated method as follows:

@Conponent
public class MyBean {

@nsLi stener (destination = "soneQueue", container Factory="nyFactory")
public void processMessage(String content) {
I

}

32.2 AMQP

The Advanced Message Queuing Protocol (AMQP) is a platform-neutral, wire-level protocol for
message-oriented middleware. The Spring AMQP project applies core Spring concepts to the
development of AMQP-based messaging solutions. Spring Boot offers several conveniences for working
with AMQP through RabbitMQ, including the spri ng- boot - st ar t er - angp “Starter”.

RabbitMQ support

RabbitMQ is a lightweight, reliable, scalable, and portable message broker based on the AMQP protocol.
Spring uses Rabbi t MQto communicate through the AMQP protocol.

2.1.0.BUILD-SNAPSHOT Spring Boot 139

https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html
https://www.rabbitmq.com/

Spring Boot Reference Guide

RabbitMQ configuration is controlled by external configuration properties in spri ng. r abbi t mg. *. For
example, you might declare the following section in appl i cati on. properti es:

spring. rabbi t ng. host =l ocal host
spring. rabbi t ng. port=5672
spring. rabbi t ng. user nane=adm n
spring. rabbi t ng. passwor d=secr et

If a Connecti onNaneStrat egy bean exists in the context, it will be automatically used to name
connections created by the auto-configured Connect i onFact or y. See Rabbi t Pr operti es formore
of the supported options.

Tip

See Understanding AMQP, the protocol used by RabbitMQ for more details.

Sending a Message

Spring’s AngpTenpl at e and AngpAdni n are auto-configured, and you can autowire them directly into
your own beans, as shown in the following example:

i nport org.springfranework. angp. cor e. AngpAdmi n;

i nport org.springfranework. angp. core. AngpTenpl at e;

i nport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;
i mport org.springframework. stereotype. Conponent ;

@onponent
public class MyBean {

private final AmgpAdm n angpAdm n;
private final AmgpTenpl ate angpTenpl at e;

@\ut owi r ed

publ i ¢ MyBean(AngpAdmi n angpAdnmi n, AngpTenpl ate angpTenpl ate) {
t hi s. angpAdm n = angpAdni n;
this. angpTenpl ate = angpTenpl at e;

}

...

Note

Rabbi t Messagi ngTenpl at e can be injected in a similar manner. If a MessageConvert er
bean is defined, it is associated automatically to the auto-configured AngpTenpl at e.

If necessary, any org.springframework. angp. core. Queue that is defined as a bean is
automatically used to declare a corresponding queue on the RabbitMQ instance.

To retry operations, you can enable retries on the AngpTenpl at e (for example, in the event that the
broker connection is lost):

spring. rabbitng. tenplate.retry. enabl ed=true
spring.rabbitng.tenplate.retry.initial-interval =2s

Retries are disabled by default. You can also customize the Ret ryTenpl at e programmatically by
declaring a Rabbi t Ret r yTenpl at eCust oni zer bean.

2.1.0.BUILD-SNAPSHOT Spring Boot 140

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java
https://spring.io/blog/2010/06/14/understanding-amqp-the-protocol-used-by-rabbitmq/
https://docs.spring.io/spring-amqp/docs/current/api/org/springframework/amqp/rabbit/core/RabbitMessagingTemplate.html

Spring Boot Reference Guide

Receiving a Message

When the Rabbit infrastructure is present, any bean can be annotated with @Rabbi t Li st ener to
create a listener endpoint. If no Rabbi t Li st ener Cont ai ner Fact ory has been defined, a default
Si npl eRabbi t Li st ener Cont ai ner Fact ory is automatically configured and you can switch to a
direct container using the spri ng. rabbi tng. | i st ener. t ype property. If a MessageConvert er
or a MessageRecover er bean is defined, it is automatically associated with the default factory.

The following sample component creates a listener endpoint on the soneQueue queue:

@Conponent
public class MyBean {

@Rabbi t Li st ener (queues = "soneQueue")

public void processMessage(String content) {
...

}

Tip
See the Javadoc of @nabl eRabbi t for more details.

If you need to create more Rabbi t Li st ener Cont ai ner Fact or y instances or if you want to override
the default, Spring Boot provides a Si npl eRabbi t Li st ener Cont ai ner Fact or yConf i gur er
and a Di rect Rabbi t Li st ener Cont ai ner Fact or yConf i gur er that you can
use to initialize a Si npl eRabbi t Li st ener Cont ai ner Fact ory and a
Di rect Rabbi t Li st ener Cont ai ner Fact ory with the same settings as the factories used by the
auto-configuration.

Tip

It does not matter which container type you chose. Those two beans are exposed by the auto-
configuration.

For instance, the following configuration class exposes another factory that uses a specific
MessageConverter:

@onfiguration
static class RabbitConfiguration {

@Bean
public Sinpl eRabbi tListenerContai ner Factory myFact ory(
Si npl eRabbi t Li st ener Cont ai ner Fact or yConfi gurer configurer) {
Si npl eRabbi t Li st ener Cont ai ner Factory factory =
new Si npl eRabbi t Li st ener Cont ai ner Fact ory();
configurer.configure(factory, connectionFactory);
factory. set MessageConvert er (nyMessageConverter());
return factory;

Then you can use the factory in any @Rabbi t Li st ener -annotated method, as follows:

@onponent
public class MyBean {

2.1.0.BUILD-SNAPSHOT Spring Boot 141

https://docs.spring.io/spring-amqp/docs/current/api/org/springframework/amqp/rabbit/annotation/EnableRabbit.html

Spring Boot Reference Guide

@Rabbi t Li st ener (queues = "sonmeQueue", contai nerFactory="nyFactory")
public void processMessage(String content) {
I

}

You can enable retries to handle situations where your listener throws an exception. By default,
Rej ect AndDont RequeueRecover er is used, but you can define a MessageRecover er of your own.
When retries are exhausted, the message is rejected and either dropped or routed to a dead-letter
exchange if the broker is configured to do so. By default, retries are disabled. You can also customize
the Ret r yTenpl at e programmatically by declaring a Rabbi t Ret r yTenpl at eCust omi zer bean.

Important

By default, if retries are disabled and the listener throws an exception, the
delivery is retried indefinitely. You can modify this behavior in two ways: Set the
def aul t RequeueRej ect ed property to f al se so that zero re-deliveries are attempted or throw
an AngpRej ect AndDont RequeueExcept i on to signal the message should be rejected. The
latter is the mechanism used when retries are enabled and the maximum number of delivery
attempts is reached.

32.3 Apache Kafka Support

Apache Kafka is supported by providing auto-configuration of the spri ng- kaf ka project.

Kafka configuration is controlled by external configuration properties in spri ng. kaf ka. *. For
example, you might declare the following section in appl i cati on. properties:

spring. kaf ka. boot st rap- server s=|l ocal host : 9092
spri ng. kaf ka. consumner . gr oup-i d=nyG oup

Tip

To create a topic on startup, add a bean of type NewTopi c. If the topic already exists, the bean
is ignored.

See Kaf kaPr operti es for more supported options.

Sending a Message

Spring’s Kaf kaTenpl at e is auto-configured, and you can autowire it directly in your own beans, as
shown in the following example:

@Conponent
public class MyBean {

private final KafkaTenplate kafkaTenpl ate;
@\ut owi r ed
publ i ¢ MyBean(Kaf kaTenpl at e kaf kaTenpl ate) {

t hi s. kaf kaTenpl ate = kaf kaTenpl at e;
}

...

2.1.0.BUILD-SNAPSHOT Spring Boot 142

http://kafka.apache.org/
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/kafka/KafkaProperties.java

Spring Boot Reference Guide

Note

If the property spring.kafka.producer.transaction-id-prefix is defined,
a Kaf kaTr ansact i onManager is automatically configured. Also, if a
Recor dMessageConverter bean is defined, it is automatically associated to the auto-
configured Kaf kaTenpl at e.

Receiving a Message

When the Apache Kafka infrastructure is present, any bean can be annotated with @af kalLi st ener
to create a listener endpoint. If no Kaf kaLi st ener Cont ai ner Fact ory has been defined, a default
one is automatically configured with keys defined in spri ng. kaf ka. | i stener. *.

The following component creates a listener endpoint on the soneTopi ¢ topic:

@onponent
public class MyBean {

@Xaf kaLi st ener (topi cs = "soneTopi c")

public void processMessage(String content) {
...

}

If a Kaf kaTransacti onManager bean is defined, it is automatically associated to the container
factory. Similarly, if a Recor dMessageConvert er, Err or Handl er or Aft er Rol | backPr ocessor
bean is defined, it is automatically associated to the default factory.

Tip

A custom Chai nedKaf kaTr ansacti onManager must be marked @i nary as it usually
references the auto-configured Kaf kaTr ansact i onManager bean.

Kafka Streams

Spring for Apache Kafka provides a factory bean to create a St r eansBui | der object and manage
the lifecycle of its streams. Spring Boot auto-configures the required Kaf kaSt r eansConf i gur ati on
bean as long as kaf ka-streans is on the classpath and Kafka Streams is enabled via the
@nabl eKaf kaSt r eans annotation.

Enabling Kafka Streams means that the application id and bootstrap servers must be set.
The former can be configured using spri ng. kaf ka. streans. appl i cati on-i d, defaulting to
spring. appl i cati on. nane if not set. The latter can be set globally or specifically overridden just
for streams.

Several additional properties are available using dedicated properties; other arbitrary Kafka properties
can be set using the spri ng. kaf ka. st r eans. properti es namespace. See also the section called
“Additional Kafka Properties” for more information.

To use the factory bean, simply wire St r eansBui | der into your @Bean as shown in the following
example:

@onfiguration
@nabl eKaf kaSt r eans
static cl ass Kaf kaStreanmsExanpl eConfiguration {

2.1.0.BUILD-SNAPSHOT Spring Boot 143

Spring Boot Reference Guide

@Bean
public KStreanxlnteger, String> kStrean(StreansBuilder streansBuilder) {
KSt reanxl nt eger, String> stream = streansBuil der.strean("kslln")
stream map((k, v) -> new KeyVal ue<>(k, v.toUpperCase())).to("kslQut"
Produced. wi t h(Serdes. I nteger (), new JsonSerde<>()))
return strean

}

By default, the streams managed by the St r eanBui | der object it creates are started automatically.
You can customize this behaviour using the spri ng. kaf ka. st r eans. aut o- st art up property.

Additional Kafka Properties

The properties supported by auto configuration are shown in Appendix A, Common application
properties. Note that, for the most part, these properties (hyphenated or camelCase) map directly to the
Apache Kafka dotted properties. Refer to the Apache Kafka documentation for details.

The first few of these properties apply to all components (producers, consumers, admins, and streams)
but can be specified at the component level if you wish to use different values. Apache Kafka designates
properties with an importance of HIGH, MEDIUM, or LOW. Spring Boot auto-configuration supports all
HIGH importance properties, some selected MEDIUM and LOW properties, and any properties that do
not have a default value.

Only a subset of the properties supported by Kafka are available directly through the
Kaf kaPr operti es class. If you wish to configure the producer or consumer with additional properties
that are not directly supported, use the following properties:

spring. kaf ka. properties. prop. one=first

spring. kaf ka. adm n. properties. prop.t w=second
spring. kaf ka. consumner . properties. prop.three=third
spring. kaf ka. producer. properties. prop. four=fourth
spring. kaf ka. streans. properties. prop.five=fifth

This sets the common pr op. one Kafka property to first (applies to producers, consumers and
admins), the pr op. t wo admin property to second, the pr op. t hr ee consumer property tot hi r d, the
prop. f our producer property to f our t h and the pr op. f i ve streams property tofi fth.

You can also configure the Spring Kafka JsonDeseri al i zer as follows:

spring. kaf ka. consuner . val ue-deseri al i zer =or g. spri ngf r amewor k. kaf ka. support. serializer.JsonDeserializer
spring. kaf ka. consuner . properties. spring.json.val ue. defaul t.type=com exanpl e. | nvoi ce
spring. kaf ka. consuner . properties. spring.json.trusted. packages=com exanpl e, or g. ache

Similarly, you can disable the JsonSeri al i zer default behavior of sending type information in
headers:

spring. kaf ka. producer . val ue-seri al i zer =or g. spri ngf ramewor k. kaf ka. support. serializer.JsonSerializer
spring. kaf ka. producer. properti es. spring.json. add. type. header s=f al se

Important

Properties set in this way override any configuration item that Spring Boot explicitly supports.

2.1.0.BUILD-SNAPSHOT Spring Boot 144

Spring Boot Reference Guide

33. Calling REST Services with Rest Tenpl at e

If you need to call remote REST services from your application, you can use the Spring Framework’s
Rest Tenpl at e class. Since Rest Tenpl at e instances often need to be customized before being
used, Spring Boot does not provide any single auto-configured Rest Tenpl at e bean. It does,
however, auto-configure a Rest Tenpl at eBui | der, which can be used to create Rest Tenpl ate
instances when needed. The auto-configured Rest Tenpl at eBui | der ensures that sensible
Ht t pMessageConvert er s are applied to Rest Tenpl at e instances.

The following code shows a typical example:

@er vi ce
public class MyService {

private final RestTenplate restTenplate;

public MyService(Rest Tenpl at eBui | der rest Tenpl at eBui | der) {
this.restTenpl ate = rest Tenpl at eBui | der. bui I d();
}

public Details someRestCall (String name) {
return this.restTenpl ate. get For Obj ect ("/{nane}/details", Details.class, nane);

}

Tip

Rest Tenpl at eBui | der includes a number of useful methods that can be used to quickly
configure a Rest Tenpl ate. For example, to add BASIC auth support, you can use
bui | der. basi cAut hori zati on("user", "password").build().

33.1 RestTemplate Customization

There are three main approaches to Rest Tenpl at e customization, depending on how broadly you
want the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured
Rest Tenpl at eBui | der and then call its methods as required. Each method call returns a new
Rest Tenpl at eBui | der instance, so the customizations only affect this use of the builder.

To make an application-wide, additive customization, use a Rest Tenpl at eCust omi zer bean. All
such beans are automatically registered with the auto-configured Rest Tenpl at eBui | der and are
applied to any templates that are built with it.

The following example shows a customizer that configures the use of a proxy for all hosts except
192.168. 0. 5:

static class ProxyCustom zer inplenments RestTenpl at eCustom zer {

@verride
public void custoni ze(Rest Tenpl ate rest Tenpl ate) {
Ht t pHost proxy = new HttpHost ("proxy. exanpl e. coni);
HtpCient httpCient = HtpCientBuilder.create()
. set Rout ePl anner (new Def aul t ProxyRout ePl anner (proxy) {

@verride
public HttpHost deterni neProxy(HttpHost target,

2.1.0.BUILD-SNAPSHOT Spring Boot 145

https://docs.spring.io/spring/docs/5.1.0.RELEASE/javadoc-api/org/springframework/web/client/RestTemplate.html

Spring Boot Reference Guide

Ht t pRequest request, HttpContext context)
throws HttpException {

if (target.getHost Nane().equal s("192.168.0.5")) {
return null;

}

return super.determ neProxy(target, request, context);

}

}) . build();
rest Tenpl at e. set Request Fact or y(
new Htt pConponent sCl i ent Ht t pRequest Factory(httpCient));

Finally, the most extreme (and rarely used) option is to create your own Rest Tenpl at eBui | der
bean. Doing so switches off the auto-configuration of a Rest Tenpl at eBui | der and prevents any

Rest Tenpl at eCust o zer beans from being used.

2.1.0.BUILD-SNAPSHOT Spring Boot

146

Spring Boot Reference Guide

34. Calling REST Services with WebCl i ent

If you have Spring WebFlux on your classpath, you can also choose to use Wbd i ent to call remote
REST services. Compared to Rest Tenpl at e, this client has a more functional feel and is fully reactive.
You can learn more about the WebCl i ent in the dedicated section in the Spring Framework docs.

Spring Boot creates and pre-configures a Webd i ent . Bui | der for you; it is strongly advised to inject
it in your components and use it to create WebC i ent instances. Spring Boot is configuring that builder
to share HTTP resources, reflect codecs setup in the same fashion as the server ones (see WebFlux
HTTP codecs auto-configuration), and more.

The following code shows a typical example:

@ervi ce
public class MyService {

private final WebCient webdient;

public MyService(Webd ient.Builder webC ientBuilder) {
this.webd ient = webd ientBuilder.baseUrl ("http://exanple.org").build();

}

publ i ¢ Mono<Det ail s> soneRest Cal | (String name) {
return this.webCient.get().uri("/{nane}/details", nane)
.retrieve().bodyToMno(Details.class);

34.1 WebClient Runtime

Spring Boot will auto-detect which C i ent Ht t pConnect or to drive WebCl i ent , depending on the
libraries available on the application classpath.

The spring-boot-starter-webflux depends on io.projectreactor.netty:reactor-
netty by default, which brings both server and client implementations. If you choose to use Jetty as
a reactive server instead, you should add a dependency on the Jetty Reactive HTTP client library,
org.eclipse.jetty:jetty-reactive-httpclient, because it will automatically share HTTP
resources with the server.

Developers can override this choice by defining their own C i ent Ht t pConnect or bean; in this case,
and depending on your HTTP client library of choice, you should also define a resource factory bean
that manages the HTTP resources for that client. For example, a React or Resour ceFact ory bean
for the Reactor Netty client.

You can learn more about the Webd i ent configuration options in the Spring Framework reference
documentation.

34.2 WebClient Customization

There are three main approaches to WebCl i ent customization, depending on how broadly you want
the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured
WebCl i ent. Bui | der and then call its methods as required. WebCl i ent . Bui | der instances are
stateful: Any change on the builder is reflected in all clients subsequently created with it. If you

2.1.0.BUILD-SNAPSHOT Spring Boot 147

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web-reactive.html#webflux-client
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web-reactive.html#webflux-client-builder
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web-reactive.html#webflux-client-builder

Spring Boot Reference Guide

want to create several clients with the same builder, you can also consider cloning the builder with
Webd i ent. Buil der ot her = buil der.clone();.

To make an application-wide, additive customization to all WebCl i ent . Bui | der instances, you can

declare Webd i ent Cust omi zer beans and change the Webd i ent . Bui | der locally at the point of
injection.

Finally, you can fall back to the original APl and use WebCl i ent . creat e() . In that case, no auto-
configuration or WebCl i ent Cust oni zer is applied.

2.1.0.BUILD-SNAPSHOT Spring Boot 148

Spring Boot Reference Guide

35. Validation

The method validation feature supported by Bean Validation 1.1 is automatically enabled as long as
a JSR-303 implementation (such as Hibernate validator) is on the classpath. This lets bean methods
be annotated with j avax. val i dat i on constraints on their parameters and/or on their return value.
Target classes with such annotated methods need to be annotated with the @/al i dat ed annotation at
the type level for their methods to be searched for inline constraint annotations.

For instance, the following service triggers the validation of the first argument, making sure its size is
between 8 and 10:

@er vi ce
@/al i dat ed
public class MyBean {

public Archive findByCodeAndAut hor (@i ze(mn = 8, nmax = 10) String code,
Aut hor aut hor) {

2.1.0.BUILD-SNAPSHOT Spring Boot 149

Spring Boot Reference Guide

36. Sending Email

The Spring Framework provides an easy abstraction for sending email by using the JavaMai | Sender
interface, and Spring Boot provides auto-configuration for it as well as a starter module.

Tip

See the reference documentation for a detailed explanation of how you can use
JavaMai | Sender .

If spring. mail . host and the relevant libraries (as defined by spri ng- boot -starter-nmnail) are
available, a default JavaMai | Sender is created if none exists. The sender can be further customized
by configuration items from the spri ng. mai | namespace. See Mai | Pr operti es for more details.

In particular, certain default timeout values are infinite, and you may want to change that to avoid having
a thread blocked by an unresponsive mail server, as shown in the following example:

spring. mail.properties.mail.sntp.connectiontimeout=5000
spring. mail.properties.mil.sntp.timeout=3000
spring. mail.properties.mail.sntp.witetimeout=5000

It is also possible to configure a JavaMai | Sender with an existing Sessi on from JNDI:

spring. mail.jndi-name=mail/Session

When aj ndi - nane is set, it takes precedence over all other Session-related settings.

2.1.0.BUILD-SNAPSHOT Spring Boot 150

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/integration.html#mail
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java

Spring Boot Reference Guide

37. Distributed Transactions with JTA

Spring Boot supports distributed JTA transactions across multiple XA resources by using either an
Atomikos or Bitronix embedded transaction manager. JTA transactions are also supported when
deploying to a suitable Java EE Application Server.

When a JTA environment is detected, Spring’s Jt aTr ansacti onManager is used to manage
transactions. Auto-configured JMS, DataSource, and JPA beans are upgraded to support XA
transactions. You can use standard Spring idioms, such as @r ansacti onal , to participate in a
distributed transaction. If you are within a JTA environment and still want to use local transactions, you
can setthe spring. jta. enabl ed property to f al se to disable the JTA auto-configuration.

37.1 Using an Atomikos Transaction Manager

Atomikos is a popular open source transaction manager which can be embedded into your Spring
Boot application. You can use the spri ng-boot-starter-jta-atomn kos Starter to pull in the
appropriate Atomikos libraries. Spring Boot auto-configures Atomikos and ensures that appropriate
depends- on settings are applied to your Spring beans for correct startup and shutdown ordering.

By default, Atomikos transaction logs are written to a transacti on-|ogs directory in your
application’s home directory (the directory in which your application jar file resides). You can
customize the location of this directory by setting a spring.jta.log-dir property in your
application. properties file. Properties starting with spring.jta.atom kos. properties
can also be used to customize the Atomikos User Transacti onServicel np. See the
At omi kosPr opert i es Javadoc for complete details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Atomikos instance must be configured with a unique ID. By default, this ID is the IP address
of the machine on which Atomikos is running. To ensure uniqueness in production, you should
configurethe spri ng. jta.transacti on- nanager - i d property with a different value for each
instance of your application.

37.2 Using a Bitronix Transaction Manager

Bitronix is a popular open-source JTA transaction manager implementation. You can use the spri ng-
boot -starter-jta-bitronix starter to add the appropriate Bitronix dependencies to your project.
As with Atomikos, Spring Boot automatically configures Bitronix and post-processes your beans to
ensure that startup and shutdown ordering is correct.

By default, Bitronix transaction log files (partl.btm and part2.btn) are written to a
transaction-1 ogs directory in your application home directory. You can customize the
location of this directory by setting the spring.jta.l og-dir property. Properties starting with
spring.jta.bitronix. properti es arealsoboundtothebitroni x.tm Confi gurationbean,
allowing for complete customization. See the Bitronix documentation for details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Bitronix instance must be configured with a unique ID. By default, this ID is the IP address

2.1.0.BUILD-SNAPSHOT Spring Boot 151

http://www.atomikos.com/
https://github.com/bitronix/btm
https://www.atomikos.com/
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/jta/atomikos/AtomikosProperties.html
https://github.com/bitronix/btm
https://github.com/bitronix/btm/wiki/Transaction-manager-configuration

Spring Boot Reference Guide

of the machine on which Bitronix is running. To ensure uniqueness in production, you should
configurethe spri ng. j ta. transacti on- manager - i d property with a different value for each
instance of your application.

37.3 Using a Java EE Managed Transaction Manager

If you package your Spring Boot application as a war or ear file and deploy it to a Java EE
application server, you can use your application server’s built-in transaction manager. Spring Boot
tries to auto-configure a transaction manager by looking at common JNDI locations (j ava: conp/
User Transacti on,j ava: conp/ Tr ansact i onManager , and so on). If you use a transaction service
provided by your application server, you generally also want to ensure that all resources are managed
by the server and exposed over JNDI. Spring Boot tries to auto-configure JMS by looking for a
Connect i onFact ory atthe JNDI path (j ava: / JnsXAorj ava: / XAConnect i onFact ory), and you
can use the spri ng. dat asour ce. j ndi - nane property to configure your Dat aSour ce.

37.4 Mixing XA and Non-XA JMS Connections

When using JTA, the primary JMS Connecti onFact ory bean is XA-aware and participates in
distributed transactions. In some situations, you might want to process certain JMS messages by using
a non-XA Connecti onFact ory. For example, your JMS processing logic might take longer than the
XA timeout.

If you want to wuse a non-XA ConnectionFactory, you can inject the
nonXaJmsConnect i onFact ory bean rather than the @ri mary j msConnecti onFact ory bean.
For consistency, the j nsConnecti onFactory bean is also provided by using the bean alias
xaJnmsConnecti onFact ory.

The following example shows how to inject Connect i onFact or y instances:

/'l Inject the primary (XA aware) ConnectionFactory
@\ut owi r ed
private ConnectionFactory defaul t Connecti onFactory;

/1 1nject the XA aware ConnectionFactory (uses the alias and injects the sane as above)
@\ut owi r ed

@ualifier("xalJnsConnecti onFactory")

private ConnectionFactory xaConnectionFactory;

/'l 1nject the non-XA aware Connecti onFactory

@\ut owi r ed

@al i fier("nonXaJnsConnect i onFact ory")

private Connecti onFactory nonXaConnecti onFact ory;

37.5 Supporting an Alternative Embedded Transaction
Manager

The XAConnecti onFact oryW apper and XADat aSour ceW apper interfaces can be used
to support alternative embedded transaction managers. The interfaces are responsible for
wrapping XAConnecti onFactory and XADat aSource beans and exposing them as regular
ConnectionFactory and DataSource beans, which transparently enroll in the distributed
transaction. DataSource and JMS auto-configuration use JTA variants, provided you have a
JtaTransacti onManager bean and appropriate XA wrapper beans registered within your
Appl i cati onCont ext .

2.1.0.BUILD-SNAPSHOT Spring Boot 152

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jms/XAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jdbc/XADataSourceWrapper.java

Spring Boot Reference Guide

The BitronixXAConnectionFactoryWrapper and BitronixXADataSourceWrapper provide good examples
of how to write XA wrappers.

2.1.0.BUILD-SNAPSHOT Spring Boot 153

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXADataSourceWrapper.java

Spring Boot Reference Guide

38. Hazelcast

If Hazelcast is on the classpath and a suitable configuration is found, Spring Boot auto-configures a
Hazel cast | nst ance that you can inject in your application.

If you define a com hazel cast. confi g. Confi g bean, Spring Boot uses that. If your configuration
defines an instance name, Spring Boot tries to locate an existing instance rather than creating a new one.

You could also specify the hazel cast . xnm configuration file to use through configuration, as shown
in the following example:

spring. hazel cast. confi g=cl asspat h: confi g/ my- hazel cast . xm

Otherwise, Spring Boot tries to find the Hazelcast configuration from the default locations:
hazel cast. xm in the working directory or at the root of the classpath. We also check if the
hazel cast. confi g system property is set. See the Hazelcast documentation for more details.

If hazel cast-client is present on the classpath, Spring Boot first attempts to create a client by
checking the following configuration options:

e The presence of acom hazel cast.client.config.dientConfig bean.
A configuration file defined by the spri ng. hazel cast . confi g property.
e The presence of the hazel cast . cl i ent. confi g system property.

e« Ahazel cast-client.xnl inthe working directory or at the root of the classpath.

Note

Spring Boot also has explicit caching support for Hazelcast. If caching is enabled, the
Hazel cast | nst ance is automatically wrapped in a CacheManager implementation.

2.1.0.BUILD-SNAPSHOT Spring Boot 154

https://hazelcast.com/
http://docs.hazelcast.org/docs/latest/manual/html-single/

Spring Boot Reference Guide

39. Quartz Scheduler

Spring Boot offers several conveniences for working with the Quartz scheduler, including the spri ng-
boot - st arter-quart z “Starter”. If Quartz is available, a Schedul er is auto-configured (through the
Schedul er Fact or yBean abstraction).

Beans of the following types are automatically picked up and associated with the Schedul er :

» JobDet ai | : defines a particular Job. JobDet ai | instances can be built with the JobBui | der API.
* Cal endar.

» Tri gger: defines when a particular job is triggered.

By default, an in-memory JobSt or e is used. However, it is possible to configure a JDBC-based store
if a Dat aSour ce bean is available in your application and if the spri ng. quart z. j ob-store-type
property is configured accordingly, as shown in the following example:

spring.quartz.job-store-type=jdbc

When the JDBC store is used, the schema can be initialized on startup, as shown in the following
example:

spring.quartz.jdbc.initialize-schema=al ways

Note

By default, the database is detected and initialized by using the standard scripts provided
with the Quartz library. It is also possible to provide a custom script by setting the
spring. quart z. jdbc. schena property.

By default, jobs created by configuration will not overwrite already registered jobs that have
been read from a persistent job store. To enable overwriting existing job definitions set the
spring.quartz.overwite-existing-jobs property.

Quartz Scheduler configuration can be customized using spring.quartz properties and
Schedul er Fact or yBeanCust oni zer beans, which allow programmatic Schedul er Fact or yBean
customization. Advanced Quartz configuration properties can be customized using
spring.quartz. properties.*.

Note

In particular, an Execut or bean is not associated with the scheduler as Quartz offers a way to
configure the scheduler via spri ng. quart z. properti es. If you need to customize the task
executor, consider implementing Schedul er Fact or yBeanCust oni zer.

Jobs can define setters to inject data map properties. Regular beans can also be injected in a similar
manner, as shown in the following example:

public class Sanpl eJob extends QuartzJobBean {
private MyService nyService;

private String nane;

2.1.0.BUILD-SNAPSHOT Spring Boot 155

http://www.quartz-scheduler.org/

Spring Boot Reference Guide

/1 1nject "MService" bean
public void set MyService(M/Service nyService) { ... }

/'l Inject the "nane" job data property
public void setName(String name) { ... }

@verride

protected voi d execut el nternal (JobExecuti onCont ext context)
throws JobExecuti onException {

2.1.0.BUILD-SNAPSHOT Spring Boot 156

Spring Boot Reference Guide

40. Task Execution and Scheduling

In the absence of a TaskExecutor bean in the context, Spring Boot auto-configures a
Thr eadPool TaskExecut or with sensible defaults that can be automatically associated to
asynchronous task execution (@nabl eAsync) and Spring MVC asynchronous request processing.

The thread pool uses 8 core threads that can grow and shrink according to the load. Those default
settings can be fine-tuned using the spri ng. t ask. execut i on namespace as shown in the following
example:

spring. task. executi on. pool . max-t hreads=16
spring. task. executi on. pool . queue- capaci t y=100
spring. t ask. executi on. pool . keep-al i ve=10s

This changes the thread pool to use a bounded queue so that when the queue is full (100 tasks), the
thread pool increases to maximum 16 threads. Shrinking of the pool is more aggressive as threads are
reclaimed when they are idle for 10 seconds (rather than 60 seconds by default).

A Thr eadPool TaskSchedul er can also be auto-configured if need to be associated to scheduled
task execution (@nabl eSchedul i ng). The thread pool uses one thread by default and those settings
can be fine-tuned using the spri ng. t ask. schedul i ng namespace.

Both a TaskExecut or Bui | der bean and a TaskSchedul er Bui | der bean are made available in
the context if a custom executor or scheduler needs to be created.

2.1.0.BUILD-SNAPSHOT Spring Boot 157

Spring Boot Reference Guide

41. Spring Integration

Spring Boot offers several conveniences for working with Spring Integration, including the spri ng-
boot -starter-integrati on“Starter”. Spring Integration provides abstractions over messaging and
also other transports such as HTTP, TCP, and others. If Spring Integration is available on your classpath,
it is initialized through the @nabl el nt egr at i on annotation.

Spring Boot also configures some features that are triggered by the presence of additional Spring
Integration modules. If spring-i ntegrati on-jnx is also on the classpath, message processing
statistics are published over JMX . If spri ng-i nt egrati on-j dbc is available, the default database
schema can be created on startup, as shown in the following line:

spring.integration.jdbc.initialize-schema=al ways

See the I ntegrationAutoConfiguration and | ntegrationProperties classes for more
details.

By default, if a Micrometer met er Regi st r y bean is present, Spring Integration metrics will be managed
by Micrometer. If you wish to use legacy Spring Integration metrics, add a Def aul t Met ri csFact ory
bean to the application context.

2.1.0.BUILD-SNAPSHOT Spring Boot 158

https://projects.spring.io/spring-integration/
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationProperties.java

Spring Boot Reference Guide

42. Spring Session

Spring Boot provides Spring Session auto-configuration for a wide range of data stores. When building
a Servlet web application, the following stores can be auto-configured:

JDBC

* Redis

* Hazelcast

* MongoDB

When building a reactive web application, the following stores can be auto-configured:
* Redis

* MongoDB

If a single Spring Session module is present on the classpath, Spring Boot uses that store
implementation automatically. If you have more than one implementation, you must choose the
St or eType that you wish to use to store the sessions. For instance, to use JDBC as the back-end
store, you can configure your application as follows:

spring. sessi on. store-type=j dbc
Tip
You can disable Spring Session by setting the st or e-t ype to none.

Each store has specific additional settings. For instance, it is possible to customize the name of the
table for the JDBC store, as shown in the following example:

spring. sessi on. j dbc. t abl e- name=SESSI ONS

For setting the timeout of the session you can use the spring.session.tineout
property. If that property is not set, the auto-configuration falls back to the value of
server.servlet.session.tinmeout.

2.1.0.BUILD-SNAPSHOT Spring Boot 159

https://projects.spring.io/spring-session/
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/StoreType.java

Spring Boot Reference Guide

43. Monitoring and Management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default, Spring Boot creates an MBeanSer ver bean with an ID of nbeanSer ver and
exposes any of your beans that are annotated with Spring JMX annotations (@hnagedResour ce,
@managedAt tri but e, or @vanagedQper at i on).

See the JnxAut oConf i gur at i on class for more details.

2.1.0.BUILD-SNAPSHOT Spring Boot 160

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java

Spring Boot Reference Guide

44, Testing

Spring Boot provides a number of utilities and annotations to help when testing your application. Test
support is provided by two modules: spri ng- boot - t est contains core items, and spri ng- boot -
t est - aut oconf i gur e supports auto-configuration for tests.

Most developers use the spri ng- boot - st art er -t est “Starter”, which imports both Spring Boot test
modules as well as JUnit, AssertJ, Hamcrest, and a number of other useful libraries.

44.1 Test Scope Dependencies

The spring-boot-starter-test “Starter” (in the t est scope) contains the following provided
libraries:

 JUnit: The de-facto standard for unit testing Java applications.

» Spring Test & Spring Boot Test: Utilities and integration test support for Spring Boot applications.
» AssertJ: A fluent assertion library.

» Hamcrest: A library of matcher objects (also known as constraints or predicates).

e Mockito: A Java mocking framework.

» JSONassert: An assertion library for JSON.

+ JsonPath: XPath for JSON.

We generally find these common libraries to be useful when writing tests. If these libraries do not suit
your needs, you can add additional test dependencies of your own.

44.2 Testing Spring Applications

One of the major advantages of dependency injection is that it should make your code easier to unit
test. You can instantiate objects by using the new operator without even involving Spring. You can also
use mock objects instead of real dependencies.

Often, you need to move beyond unit testing and start integration testing (with a Spring
Appl i cati onCont ext). It is useful to be able to perform integration testing without requiring
deployment of your application or needing to connect to other infrastructure.

The Spring Framework includes a dedicated test module for such integration testing. You can
declare a dependency directly to or g. spri ngf ramewor k: spri ng-t est oruse the spri ng- boot -
starter-test “Starter” to pull it in transitively.

If you have not used the spri ng-t est module before, you should start by reading the relevant section
of the Spring Framework reference documentation.

44.3 Testing Spring Boot Applications

A Spring Boot application is a Spring Appl i cat i onCont ext , so nothing very special has to be done
to test it beyond what you would normally do with a vanilla Spring context.

2.1.0.BUILD-SNAPSHOT Spring Boot 161

http://junit.org
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#integration-testing
http://joel-costigliola.github.io/assertj/
http://hamcrest.org/JavaHamcrest/
http://mockito.org/
https://github.com/skyscreamer/JSONassert
https://github.com/jayway/JsonPath
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#testing

Spring Boot Reference Guide

Note

External properties, logging, and other features of Spring Boot are installed in the context by
default only if you use Spri ngAppl i cati on to create it.

Spring Boot provides a @ppri ngBoot Test annotation, which can be used as an alternative to
the standard spri ng-test @Cont ext Configurati on annotation when you need Spring Boot
features. The annotation works by creating the Appl i cati onCont ext used in your tests through
Spri ngAppl i cation. In addition to @pri ngBoot Test a number of other annotations are also
provided for testing more specific slices of an application.

Tip

If you are using JUnit 4, don't forget to also add @RunW t h(Spri ngRunner . cl ass) to your
test, otherwise the annotations will be ignored. If you are using JUnit 5, there’s no need to add the
equivalent @xt endW t h(Spri ngExt ensi on) as @pri ngBoot Test and the other @.Test
annotations are already annotated with it.

By default, @pr i ngBoot Test will not start a server. You can use the webEnvi r onnment attribute of
@5pr i ngBoot Test to further refine how your tests run:

e MOCK(Default) : Loads a web Appl i cati onCont ext and provides a mock web environment.
Embedded servers are not started when using this annotation. If a web environment is not
available on your classpath, this mode transparently falls back to creating a regular non-
web Appl i cati onCont ext. It can be used in conjunction with @\ut oConf i gur eMockM/c or
@\ut oConf i gur eWebTest Cl i ent for mock-based testing of your web application.

* RANDOM PORT: Loads a WebSer ver Appl i cat i onCont ext and provides a real web environment.
Embedded servers are started and listen on a random port.

» DEFI NED_PORT: Loads aWebSer ver Appl i cat i onCont ext and provides a real web environment.
Embedded servers are started and listen on a defined port (from your appl i cati on. properti es)
or on the default port of 8080.

* NONE: Loads an Appl i cati onCont ext by using Spri ngAppl i cati on but does not provide any
web environment (mock or otherwise).

Note

If your test is @r ansacti onal, it rolls back the transaction at the end of each test method
by default. However, as using this arrangement with either RANDOM PORT or DEFI NED _PORT
implicitly provides a real servlet environment, the HTTP client and server run in separate threads
and, thus, in separate transactions. Any transaction initiated on the server does not roll back in
this case.

Note

@pr i ngBoot Test withwebEnvi ronnent = WebEnvi r onnment . RANDOM_PORT will also start
the management server on a separate random port if your application uses a different port for
the management server.

2.1.0.BUILD-SNAPSHOT Spring Boot 162

Spring Boot Reference Guide

Detecting Web Application Type

If Spring MVC is available, a regular MVC-based application context is configured. If you have only
Spring WebFlux, we’ll detect that and configure a WebFlux-based application context instead.

If both are present, Spring MVC takes precedence. If you want to test a reactive web application in this
scenario, you must set the spri ng. mai n. web- appl i cati on-type property:

@RunW t h(Spri ngRunner . cl ass)
@Bpr i ngBoot Test (properties = "spring. nai n. web-appl i cati on-type=reactive")
public class MyWebFl uxTests { ... }

Detecting Test Configuration

If you are familiar with the Spring Test Framework, you may be used to using
@cont ext Confi gurati on(cl asses=..) in order to specify which Spring @onf i gur at i on to load.
Alternatively, you might have often used nested @onf i gur at i on classes within your test.

When testing Spring Boot applications, this is often not required. Spring Boot's @ Test annotations
search for your primary configuration automatically whenever you do not explicitly define one.

The search algorithm works up from the package that contains the test until it finds a class annotated
with @pr i ngBoot Appl i cati on or @pri ngBoot Confi gur ati on. As long as you structured your
code in a sensible way, your main configuration is usually found.

Note

If you use a test annotation to test a more specific slice of your application, you should avoid adding
configuration settings that are specific to a particular area on the main method’s application class.

The underlying component scan configuration of @pr i ngBoot Appl i cati on defines exclude
filters that are used to make sure slicing works as expected. If you are using an explicit
@onponent Scan directive on your @pri ngBoot Appl i cat i on-annotated class, be aware
that those filters will be disabled. If you are using slicing, you should define them again.

If you want to customize the primary configuration, you can use a nested @est Conf i gur at i on class.
Unlike a nested @onf i gur ati on class, which would be used instead of your application’s primary
configuration, a nested @est Confi gur ati on class is used in addition to your application’s primary
configuration.

Note

Spring’s test framework caches application contexts between tests. Therefore, as long as your
tests share the same configuration (no matter how it is discovered), the potentially time-consuming
process of loading the context happens only once.

Excluding Test Configuration

If your application uses component scanning (for example, if you use @spr i ngBoot Appl i cati on or
@conponent Scan), you may find top-level configuration classes that you created only for specific tests
accidentally get picked up everywhere.

As we have seen earlier, @est Conf i gur ati on can be used on an inner class of a test to customize
the primary configuration. When placed on a top-level class, @est Confi gur ati on indicates that

2.1.0.BUILD-SNAPSHOT Spring Boot 163

Spring Boot Reference Guide

classes in src/test/java should not be picked up by scanning. You can then import that class
explicitly where it is required, as shown in the following example:

@unW t h(SpringRunner. cl ass)

@Bpr i ngBoot Test

@ nport (MyTest sConfi gurati on. cl ass)
public class MyTests {

@est
public void exanpl eTest () {

}

Note

If you directly use @onponent Scan (that is, not through @pri ngBoot Appl i cati on) you
need to register the TypeExcl udeFi | t er with it. See the Javadoc for details.

Testing with a mock environment

By default, @pr i ngBoot Test does not start the server. If you have web endpoints that you want to
test against this mock environment, you can additionally configure MockM/c as shown in the following
example:

import org.junit. Test;
import org.junit.runner.RunWth;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranework. boot .t est. aut oconfi gure. web. servl et. Aut oConfi gur eMbckM/c;
i nport org.springfranmework. boot . test.context. SpringBoot Test ;

i mport org.springframework.test.context.junit4.SpringRunner;

i mport org.springframework.test.web. servlet. MockMc;

inport static org.springfranework.test.web.servlet.request. MockMcRequest Bui | ders. get;
import static org.springfranmework.test.web.servlet.result.MckMcResultMtchers. content;
i nport static org.springfranmework.test.web.servlet.result.MckMcResultMatchers. st at us;

@unW t h(SpringRunner. cl ass)

@Bpr i ngBoot Test

@\ut oConf i gur eMockM/c

public class MockM/cExanpl eTests {

@\ut owi r ed
private MdckMic nmvc;

@rest
public void exanpl eTest () throws Exception {
this.nvc. perforn(get("/")).andExpect(status().isCk())
. andExpect (content().string("Hello World"));

Tip

If you want to focus only on the web layer and not start a complete Appl i cati onCont ext,
consider using @ébM/cTest instead.

Alternatively, you can configure a WebTest Cl i ent as shown in the following example:

2.1.0.BUILD-SNAPSHOT Spring Boot 164

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/context/TypeExcludeFilter.html
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference//testing.html#spring-mvc-test-framework
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#webtestclient-tests

Spring Boot Reference Guide

import org.junit. Test;
import org.junit.runner.RunWth;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranework. boot .t est. aut oconfi gure. web. reacti ve. Aut oConfi gureWebTest d i ent ;
i nport org.springfranmework. boot . test.context. SpringBoot Test;

i mport org.springframework.test.context.junit4.SpringRunner;

i mport org.springframework.test.web. reactive. server. WbTestd i ent;

@RunW t h(Spri ngRunner . cl ass)

@pr i ngBoot Test

@\ut oConf i gureWebTest C i ent

public class MckWebTestd i ent Exanpl eTests {

@A\ut owi r ed
private WebTestClient webCient;

@est
public void exanpl eTest () {
this.webCient.get().uri("/").exchange().expectStatus().isCk()
. expect Body(String.class).isEqual To("Hello Wrld");

Testing with a running server

If you need to start a full running server, we recommend that you use random ports. If you
use @pri ngBoot Test (webEnvi r onment =\WWebEnvi r onnent . RANDOM PORT) , an available port
is picked at random each time your test runs.

The @ocal Server Port annotation can be used to inject the actual port used into your test. For
convenience, tests that need to make REST calls to the started server can additionally @\ut owi re a
WebTest C i ent, which resolves relative links to the running server and comes with a dedicated API
for verifying responses, as shown in the following example:

inmport org.junit. Test;
import org.junit.runner. RunWth;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i mport org.springframework. boot . test.context. SpringBoot Test;

i nport org.springframework. boot . test.context. SpringBoot Test. WbEnvironnent;
i nport org.springfranework.test.context.junit4. SpringRunner;

i nport org.springfranework.test.web.reactive.server. WbTestC ient;

@unW t h(Spri ngRunner . cl ass)
@pr i ngBoot Test (webEnvi ronnent = WebEnvi r onnent . RANDOM_PORT)
public class RandonPortWebTest d i ent Exanpl eTests {

@A\ut owi red
private WebTestClient webClient;

@est
public void exanpl eTest () {
this.webdient.get().uri("/").exchange().expectStatus().isOk()
. expect Body(String.class).isEqual To("Hello World");

This setup requires spr i ng- webf | ux on the classpath. If you can’t or won’t add webflux, Spring Boot
also provides a Test Rest Tenpl at e facility:

inport org.junit. Test;
import org.junit.runner. RunWth;

2.1.0.BUILD-SNAPSHOT Spring Boot 165

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#webtestclient-tests

Spring Boot Reference Guide

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i mport org.springframework. boot . t est. cont ext. Spri ngBoot Test ;

i nport org.springframework. boot . test.context. SpringBoot Test. WbEnvironnent;
i nport org.springfranework. boot.test.web. client. Test Rest Tenpl at e;

i nport org.springfranework.test.context.junit4. SpringRunner;

inport static org.assertj.core.api.Assertions.assertThat;

@unW t h(SpringRunner. cl ass)
@pr i ngBoot Test (webEnvi ronnent = WebEnvi r onnent . RANDOM_PORT)
public class RandonPort Test Rest Tenpl at eExanpl eTests {

@\ut owi r ed
private TestRest Tenpl ate rest Tenpl at e;

@rest

public void exanpl eTest () {
String body = this.restTenpl ate. get Foroject("/", String.class);
assert That (body) . i sEqual To("Hel | o World");

}

Using JMX

As the test context framework caches context, JMX is disabled by default to prevent identical
components to register on the same domain. If such test needs access to an MBeanSer ver , consider
marking it dirty as well:

@RunW t h(Spri ngRunner . cl ass)

@pr i ngBoot Test (properties = "spring.jnx.enabl ed=true")
@i rti esCont ext

public class Sanpl eJnmkTests {

@\ut owi r ed
private MBeanServer nBeanServer;

@est
public void exanpl eTest () {
Il

}

Mocking and Spying Beans

When running tests, it is sometimes necessary to mock certain components within your application
context. For example, you may have a facade over some remote service that is unavailable during
development. Mocking can also be useful when you want to simulate failures that might be hard to
trigger in a real environment.

Spring Boot includes a @/bckBean annotation that can be used to define a Mockito mock for a bean
inside your Appl i cat i onCont ext . You can use the annotation to add new beans or replace a single
existing bean definition. The annotation can be used directly on test classes, on fields within your test,
or on @onf i gur ati on classes and fields. When used on a field, the instance of the created mock is
also injected. Mock beans are automatically reset after each test method.

Note

If your test uses one of Spring Boot's test annotations (such as @pr i ngBoot Test), this feature
is automatically enabled. To use this feature with a different arrangement, a listener must be
explicitly added, as shown in the following example:

2.1.0.BUILD-SNAPSHOT Spring Boot 166

Spring Boot Reference Guide

| ‘ @est Execut i onLi st ener s(Mocki t oTest Execut i onLi st ener. cl ass)

The following example replaces an existing Renot eSer vi ce bean with a mock implementation:

inport org.junit.*;

inport org.junit.runner.*;

i nport org.springfranework. beans. factory. annotati on. *;
i mport org.springfranework. boot .t est. context.*;

i nport org.springfranmework. boot . test. nock. nockito. *;

i mport org.springframework.test.context.junit4.*;

inport static org.assertj.core.api.Assertions.*;
i nport static org.nockito. BDDVbckito. *;

@RunW t h(SpringRunner. cl ass)
@Bpr i ngBoot Test
public class MyTests {

@/bckBean
private RenoteService renoteService;

@\ut owi r ed
private Reverser reverser;

@rest

public void exanpl eTest () {
/'l RenoteService has been injected into the reverser bean
gi ven(this.renpteService.soneCall()).wllReturn("nock");
String reverse = reverser.reverseSonmeCall ();
assert That (reverse). i sEqual To("kcont');

}

Additionally, you can use @pyBean to wrap any existing bean with a Mockito spy. See the Javadoc
for full details.

Note

While Spring’s test framework caches application contexts between tests and reuses a context for
tests sharing the same configuration, the use of @wckBean or @pyBean influences the cache
key, which will most likely increase the number of contexts.

Auto-configured Tests

Spring Boot’s auto-configuration system works well for applications but can sometimes be a little too
much for tests. It often helps to load only the parts of the configuration that are required to test a “slice”
of your application. For example, you might want to test that Spring MVC controllers are mapping URLS
correctly, and you do not want to involve database calls in those tests, or you might want to test JPA
entities, and you are not interested in the web layer when those tests run.

The spri ng- boot -t est - aut oconf i gur e module includes a number of annotations that can be
used to automatically configure such “slices”. Each of them works in a similar way, providing a @.Test
annotation that loads the Appl i cati onCont ext and one or more @\ut oConf i gur e...annotations
that can be used to customize auto-configuration settings.

Note

Each slice restricts component scan to appropriate components and loads a very restricted
set of auto-configuration classes. If you need to exclude one of them, most @.Test

2.1.0.BUILD-SNAPSHOT Spring Boot 167

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/test/mock/mockito/SpyBean.html

Spring Boot Reference Guide

annotations provide an excl udeAut oConfi gur ati on attribute. Alternatively, you can use
@ nport Aut oConfi gur ati on#excl ude.

Tip

It is also possible to use the @hAutoConfigure... annotations with the standard
@Bpr i ngBoot Test annotation. You can use this combination if you are not interested in “slicing”
your application but you want some of the auto-configured test beans.

Auto-configured JSON Tests

To test that object JSON serialization and deserialization is working as expected, you can use the
@sonTest annotation. @sonTest auto-configures the available supported JISON mapper, which can
be one of the following libraries:

» Jackson Obj ect Mapper, any @sonConponent beans and any Jackson Modul es
* Gson
» Jsonb

Tip

A list of the auto-configurations that are enabled by @sonTest can be found in the appendix.

If you need to configure elements of the auto-configuration, you can use the
@\ut oConf i gureJsonTest er s annotation.

Spring Boot includes AssertJ-based helpers that work with the JSONAssert and JsonPath libraries
to check that JSON appears as expected. The JacksonTest er, GsonTest er, JsonbTest er, and
Basi cJsonTest er classes can be used for Jackson, Gson, Jsonb, and Strings respectively. Any
helper fields on the test class can be @\wut ow r ed when using @sonTest . The following example
shows a test class for Jackson:

import org.junit.*;

i mport org.junit.runner.*;

i nport org.springfranework. beans. factory. annotati on. *;

i nport org.springframework. boot . test.autoconfigure.json.*;
i nport org.springframework. boot. test.context.*;

i nport org.springframework. boot.test.json.*;

i nport org.springfranework.test.context.junit4.*;

inport static org.assertj.core.api.Assertions.*;

@unW t h(SpringRunner. cl ass)
@sonTest
public class MyJsonTests {

@\ut owi r ed
private JacksonTester <Vehicl eDetail s> json;

@est
public void testSerialize() throws Exception {
Vehicl eDetails details = new Vehicl eDetail s("Honda", "Civic");
/|l Assert against a “.json file in the same package as the test
assertThat (this.json.wite(details)).isEqual ToJson("expected.json");
/1l O use JSON path based assertions
assertThat (this.json.wite(details)).hasJsonPathStringVal ue(" @ nmake");
assertThat (this.json.wite(details)).extractingJsonPathStringVal ue(" @ nmake")

2.1.0.BUILD-SNAPSHOT Spring Boot 168

Spring Boot Reference Guide

. i sEqual To(" Honda");
}

@rest
public void testDeserialize() throws Exception {
String content = "{\"make\":\"Ford\",\"nodel\":\"Focus\"}";

assertThat (this.json. parse(content))
. i sEqual To(new Vehi cl eDetail s("Ford", "Focus"));
assert That (thi s.json. parseCbj ect (content). get Make()).i sEqual To("Ford");
}

Note

JSON helper classes can also be used directly in standard unit tests. To do so, call the
i ni tFi el ds method of the helper in your @ef or e method if you do not use @sonTest .

Auto-configured Spring MVC Tests

To test whether Spring MVC controllers are working as expected, use the @ebM/cTest
annotation. @ébM/cTest auto-configures the Spring MVC infrastructure and limits scanned beans
to @ontroller, @ontroll erAdvi ce, @sonConponent, Converter, GenericConverter,
Filter, WebM/cConfigurer, and Handl er Met hodAr gunent Resol ver. Regular @onponent
beans are not scanned when using this annotation.

Tip

A list of the auto-configuration settings that are enabled by @¥bM/cTest can be found in the
appendix.

Tip

If you need to register extra components, such as the Jackson Mbdul e, you can import additional
configuration classes by using @ nport on your test.

Often, @ebM/cTest is limited to a single controller and is used in combination with @/bckBean to
provide mock implementations for required collaborators.

@\ebM/cTest also auto-configures MockMsc. Mock MVC offers a powerful way to quickly test MVC
controllers without needing to start a full HTTP server.

Tip

You can also auto-configure MockMvc in a non-@¥bM/cTest (such as @pr i ngBoot Test) by
annotating it with @\wut oConf i gur eMockM/c. The following example uses MockM/c:

inport org.junit.*;

inport org.junit.runner.*;

i nport org.springfranework. beans. factory. annotati on. *;

i nport org.springfranework. boot . t est. aut oconfi gure. web. servlet.*;
i nport org.springfranmework. boot . test. nock. nockito. *;

inport static org.assertj.core.api.Assertions.*;
inport static org.nockito. BDDVbckito. *;
inport static org.springfranmework.test.web.servlet.request. MockM/cRequest Bui | ders. *;

2.1.0.BUILD-SNAPSHOT Spring Boot 169

Spring Boot Reference Guide

inport static org.springframework.test.web.servlet.result.MckMcResul t Matchers. *;

@RunW t h(Spri ngRunner . cl ass)
@\ebM/cTest (User Vehi cl eControl | er. cl ass)
public class MyControllerTests {

@\ut owi red
private MockMic mvc;

@/bckBean
private UserVehicl eService userVehi cl eServi ce;

@est
public void testExanple() throws Exception {
gi ven(this. userVehicl eService. get Vehi cl eDetai |l s("sboot"))
.Wi || Return(new Vehicl eDetail s("Honda", "Civic"));
this.nvc. perforn(get("/sboot/vehicle").accept(MdiaType. TEXT_PLAI N))
. andExpect (status().isCk()).andExpect (content().string("Honda G vic"));

Tip

If you need to configure elements of the auto-configuration (for example, when servlet filters should
be applied) you can use attributes in the @ut oConf i gur eMockM/c annotation.

If you use HtmlUnit or Selenium, auto-configuration also provides an HTMLUnit WebCl i ent bean and/
or a WebDr i ver bean. The following example uses HtmlUnit:

i nport com gargoyl esoftware. htmfunit.*;

inport org.junit.*;

import org.junit.runner.*;

i nport org.springfranework. beans. factory. annotati on. *;

i nport org.springfranmework. boot . t est. aut oconfi gure. web. servlet.*;
i mport org.springframework. boot . test. nock. nockito. *;

inport static org.assertj.core.api.Assertions.*;
i nport static org.nockito. BDDVbckito. *;

@RunW t h(SpringRunner. cl ass)
@\ebM/cTest (User Vehi cl eControl | er. cl ass)
public class MyH m UnitTests {

@A\ut owi red
private WebClient webCient;

@mbckBean
private User Vehicl eService userVehicl eServi ce;

@rest
public void testExanple() throws Exception {
gi ven(this. userVehicl eService. get Vehi cl eDetai | s("shoot"))
.wi | | Return(new Vehicl eDetail s("Honda", "Civic"));
Ht M Page page = this.webd ient.getPage("/sboot/vehicle. htm");
assert That (page. get Body() . get Text Content ()).i sEqual To("Honda Civic");
}

Note

By default, Spring Boot puts WebDr i ver beans in a special “scope” to ensure that the driver exits
after each test and that a new instance is injected. If you do not want this behavior, you can add
@cope("singl eton") toyour WebDri ver @ean definition.

2.1.0.BUILD-SNAPSHOT Spring Boot 170

Spring Boot Reference Guide

If you have Spring Security on the classpath, @\¥bM/cTest will also scan WebSecuri t yConfi gurer
beans. Instead of disabling security completely for such tests, you can use Spring Security’s test support.
More details on how to use Spring Security’s Mock M/ ¢ support can be found in this Chapter 79, Testing
With Spring Security how-to section.

Tip

Sometimes writing Spring MVC tests is not enough; Spring Boot can help you run full end-to-end
tests with an actual server.

Auto-configured Spring WebFlux Tests

To test that Spring WebFlux controllers are working as expected, you can use the
@\ebFl uxTest annotation. @\bFl uxTest auto-configures the Spring WebFlux infrastructure and
limits scanned beans to @ontroller, @ontrollerAdvice, @sonConponent, Converter,
Generi cConvert er,and WebFl uxConf i gur er . Regular @Conponent beans are not scanned when
the @\ebFl uxTest annotation is used.

Tip

A list of the auto-configurations that are enabled by @\bFl uxTest can be found in the appendix.

Tip

If you need to register extra components, such as Jackson Mbdul e, you can import additional
configuration classes using @ nport on your test.

Often, @\ébFIl uxTest is limited to a single controller and used in combination with the @wbckBean
annotation to provide mock implementations for required collaborators.

@\ebFl uxTest also auto-configures WebTest Cl i ent , which offers a powerful way to quickly test
WebFlux controllers without needing to start a full HTTP server.

Tip

You can also auto-configure WebTestCient in a non-@¥bFl uxTest (such as
@pri ngBoot Test) by annotating it with @\ut oConf i gur eWebTest O i ent. The following
example shows a class that uses both @\bFl uxTest and a WebTest Cl i ent :

import org.junit. Test;
i nmport org.junit.runner. RunWth;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranmework. boot . test. autoconfigure.web. reactive. WebFl uxTest ;
i nport org.springfranework. http. Medi aType;

i mport org.springframework.test.context.junit4.SpringRunner;

i nport org.springframework.test.web.reactive.server. WbTestd ient;

@RunW t h(Spri ngRunner . cl ass)
@\ebFl uxTest (User Vehi cl eControl | er. cl ass)
public class MyControllerTests {

@\ut owi r ed
private WebTestClient webCient;

2.1.0.BUILD-SNAPSHOT Spring Boot 171

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference//web-reactive.html
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#webtestclient

Spring Boot Reference Guide

@mbckBean
private UserVehicl eService userVehicl eServi ce;

@rest
public void testExanple() throws Exception {
gi ven(this. userVehicl eService. get Vehi cl eDetai | s("shoot"))
.wi | | Return(new Vehicl eDetail s("Honda", "Cvic"));
this.webdient.get().uri("/sboot/vehicle").accept(MdiaType. TEXT_PLAI N
. exchange()
.expect Status().isCk()
. expect Body(String. cl ass).isEqual To("Honda Civic");

Tip

This setup is only supported by WebFlux applications as using WebTest Cl i ent in a mocked
web application only works with WebFlux at the moment.

Note

@\ebFl uxTest cannot detect routes registered via the functional web framework. For testing
Rout er Funct i on beans in the context, consider importing your Rout er Funct i on yourself via
@ nport orusing @pri ngBoot Test .

Tip

Sometimes writing Spring WebFlux tests is not enough; Spring Boot can help you run full end-
to-end tests with an actual server.

Auto-configured Data JPA Tests

You can use the @at aJpaTest annotation to test JPA applications. By default, it configures an in-
memory embedded database, scans for @nt i t y classes, and configures Spring Data JPA repositories.
Regular @onponent beans are not loaded into the Appl i cat i onCont ext .

Tip

A list of the auto-configuration settings that are enabled by @at aJpaTest can be found in the
appendix.

By default, data JPA tests are transactional and roll back at the end of each test. See the relevant section
in the Spring Framework Reference Documentation for more details. If that is not what you want, you
can disable transaction management for a test or for the whole class as follows:

import org.junit. Test;

import org.junit.runner. RunWth;

i nport org.springframework. boot . test.autoconfigure.orm jpa. DataJpaTest;
i nport org.springfranework.test.context.junit4. SpringRunner;

i nport org.springframework.transaction. annotation. Propagation;

i nport org.springfranework.transaction. annotati on. Transacti onal ;

@RunW t h(SpringRunner. cl ass)

@pat aJpaTest

@r ansacti onal (propagati on = Propagati on. NOT_SUPPORTED)
public class Exanpl eNonTransactional Tests {

2.1.0.BUILD-SNAPSHOT Spring Boot 172

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

Spring Boot Reference Guide

}

Data JPA tests may also inject a Test EntityManager bean, which provides an alternative
to the standard JPA EntityManager that is specifically designed for tests. If you want
to use TestEntityManager outside of @pataJdpaTest instances, you can also use the
@\ut oConfi gureTest Enti t yManager annotation. A JdbcTenpl at e is also available if you need
that. The following example shows the @at aJpaTest annotation in use:

inport org.junit.*;

import org.junit.runner.*;
i nport org.springfranework. boot . test. aut oconfi gure.orm jpa.*;

inport static org.assertj.core.api.Assertions.*;
@RunW t h(Spri ngRunner . cl ass)
@at aJpaTest

public class Exanpl eRepositoryTests {

@\ut owi r ed
private TestEntityManager entityManager;

@A\ut owi red
private UserRepository repository;

@est
public void testExanple() throws Exception {
this. entityManager. persi st (new User("sboot", "1234"));

User user = this.repository.findByUsernane("sbhoot");
assert That (user. get Usernanme()) . i sEqual To("sboot");
assert That (user.getVin()).isEqual To("1234");

}

In-memory embedded databases generally work well for tests, since they are fast and do not require
any installation. If, however, you prefer to run tests against a real database you can use the
@\ut oConfi gur eTest Dat abase annotation, as shown in the following example:

@RunW t h(Spri ngRunner . cl ass)

@pat aJpaTest

@\ut oConfi gur eTest Dat abase(r epl ace=Repl ace. NONE)
public class Exanpl eRepositoryTests {

...

Auto-configured JDBC Tests

@dbcTest issimilarto @at aJpaTest butis for tests that only require a Dat aSour ce and do not use
Spring Data JDBC. By default, it configures an in-memory embedded database and a JdbcTenpl at e.
Regular @onponent beans are not loaded into the Appl i cat i onCont ext .

Tip

A list of the auto-configurations that are enabled by @dbcTest can be found in the appendix.

By default, JDBC tests are transactional and roll back at the end of each test. See the relevant section
in the Spring Framework Reference Documentation for more details. If that is not what you want, you
can disable transaction management for a test or for the whole class, as follows:

import org.junit. Test;

2.1.0.BUILD-SNAPSHOT Spring Boot 173

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-test-autoconfigure/src/main/java/org/springframework/boot/test/autoconfigure/orm/jpa/TestEntityManager.java
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

Spring Boot Reference Guide

i mport org.junit.runner.RunWth;

i mport org.springframework. boot . t est. aut oconfi gure.jdbc. JdbcTest;
i nport org.springframework.test.context.junit4.SpringRunner;

i nport org.springfranework.transaction. annot ati on. Propagati on;

i nport org.springfranework.transaction. annotati on. Transacti onal ;

@unW t h(Spri ngRunner . cl ass)

@dbcTest

@ransact i onal (propagati on = Propagati on. NOT_SUPPORTED)
public class Exanpl eNonTr ansacti onal Tests {

}

If you prefer your test to run against a real database, you can use the @\ut oConf i gur eTest Dat abase
annotation in the same way as for Dat aJpaTest . (See "the section called “Auto-configured Data JPA
Tests™.)

Auto-configured Data JDBC Tests

@pat aJdbcTest is similar to @dbcTest but is for tests that use Spring Data JDBC repositories. By
default, it configures an in-memory embedded database, a JdbcTenpl at e, and Spring Data JDBC
repositories. Regular @onponent beans are not loaded into the Appl i cati onCont ext .

Tip

A list of the auto-configurations that are enabled by @at aJdbcTest can be found in the
appendix.

By default, Data JDBC tests are transactional and roll back at the end of each test. See the relevant
section in the Spring Framework Reference Documentation for more details. If that is not what you want,
you can disable transaction management for a test or for the whole test class as shown in the JDBC

example.

If you prefer your test to run against a real database, you can use the @\wut oConf i gur eTest Dat abase
annotation in the same way as for Dat aJpaTest . (See "the section called “Auto-configured Data JPA
Tests™.)

Auto-configured jOOQ Tests

You can use @ooqgTest in a similar fashion as @dbcTest but for jOOQ-related tests. As
jOOQ relies heavily on a Java-based schema that corresponds with the database schema, the
existing Dat aSour ce is used. If you want to replace it with an in-memory database, you can use
@\t oConfi gur eTest Dat abase to override those settings. (For more about using jOOQ with Spring
Boot, see "Section 29.6, “Using JOOQ™, earlier in this chapter.) Regular @onponent beans are not
loaded into the Appl i cati onCont ext .

Tip

A list of the auto-configurations that are enabled by @ooqTest can be found in the appendix.

@ooqTest configures a DSLCont ext. Regular @onponent beans are not loaded into the
Appl i cati onCont ext . The following example shows the @ooqTest annotation in use:

i nport org.jooq. DSLCont ext ;
import org.junit. Test;

2.1.0.BUILD-SNAPSHOT Spring Boot 174

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

Spring Boot Reference Guide

i mport org.junit.runner.RunWth;
i nport org.springframework. boot . test.autoconfigure.jooq.JooqTest;
i nport org.springframework.test.context.junit4.SpringRunner;

@RunW t h(Spri ngRunner . cl ass)
@ooqTest
public class Exanpl eJooqTests {

@A\ut owi red
private DSLContext dsl Context;
}

JOOQ tests are transactional and roll back at the end of each test by default. If that is not what you
want, you can disable transaction management for a test or for the whole test class as shown in the

JDBC example.
Auto-configured Data MongoDB Tests

You can use @at aMongoTest to test MongoDB applications. By default, it configures an in-memory
embedded MongoDB (if available), configures a MongoTenpl at e, scans for @ocurent classes,
and configures Spring Data MongoDB repositories. Regular @onponent beans are not loaded into
the Appl i cati onCont ext . (For more about using MongoDB with Spring Boot, see "Section 30.2
“MongoDB™, earlier in this chapter.)

Tip

A list of the auto-configuration settings that are enabled by @at aMongoTest can be found in
the appendix.

The following class shows the @at aMongoTest annotation in use:

i mport org.junit.runner.RunWth;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springframework. boot . test. aut oconfi gure. dat a. nrongo. Dat aMbngoTest ;
i nport org.springframework. dat a. nrongodb. cor e. MongoTenpl at e;

i nport org.springfranework.test.context.junit4. SpringRunner;

@unW t h(Spri ngRunner . cl ass)
@at aMbngoTest
public class Exanpl eDat aMbngoTests {

@A\ut owi red
private MngoTenpl ate nongoTenpl at e;

Il

}

In-memory embedded MongoDB generally works well for tests, since it is fast and does not require any
developer installation. If, however, you prefer to run tests against a real MongoDB server, you should
exclude the embedded MongoDB auto-configuration, as shown in the following example:

import org.junit.runner.RunWth;

i mport org.springframework. boot . aut oconfi gur e. nbngo. enbedded. EnbeddedMongoAut oConf i gur ati on;
i nport org.springfranework. boot . test. autoconfi gure. dat a. nongo. Dat aMongoTest ;
i nport org.springfranework.test.context.junit4. SpringRunner;

@RunW t h(SpringRunner. cl ass)

@at aMbngoTest (excl udeAut oConfi gurati on = EnbeddedMongoAut oConfi gurati on. cl ass)
public class Exanpl eDat aMbongoNonEnbeddedTests {

}

2.1.0.BUILD-SNAPSHOT Spring Boot 175

Spring Boot Reference Guide

Auto-configured Data Neo4j Tests

You can use @at aNeo4j Test to test Neo4j applications. By default, it uses an in-memory embedded
Neo4j (if the embedded driver is available), scans for @NodeEnt i ty classes, and configures Spring
Data Neo4j repositories. Regular @onponent beans are not loaded into the Appl i cat i onCont ext .
(For more about using Neo4J with Spring Boot, see "Section 30.3, “Neo4j™", earlier in this chapter.)

Tip

A list of the auto-configuration settings that are enabled by @at aNeo4j Test can be found in
the appendix.

The following example shows a typical setup for using Neo4J tests in Spring Boot:

import org.junit.runner.RunWth;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranework. boot . test. autoconfi gure. dat a. neo4j . Dat aNeo4j Test ;
i nport org.springfranework.test.context.junit4. SpringRunner;

@unW t h(SpringRunner. cl ass)
@pat aNeo4j Test
public class Exanpl eDat aNeo4j Tests {

@\ut owi r ed
private YourRepository repository;

Il

}

By default, Data Neo4j tests are transactional and roll back at the end of each test. See the relevant
section in the Spring Framework Reference Documentation for more details. If that is not what you want,
you can disable transaction management for a test or for the whole class, as follows:

import org.junit. Test;

import org.junit.runner. RunWth;

i nport org.springfranmework. boot . test. autoconfi gure. dat a. neo4j . Dat aNeo4j Test ;
i mport org.springframework.test.context.junit4.SpringRunner;

i nport org.springframework.transaction.annotation. Propagation;

i nport org.springfranework.transaction. annotati on. Transacti onal ;

@unW t h(Spri ngRunner . cl ass)

@Dat aNeo4j Test

@r ansact i onal (propagati on = Propagati on. NOT_SUPPORTED)
public class Exanpl eNonTransacti onal Tests {

}

Auto-configured Data Redis Tests

You can use @Dat aRedi sTest totest Redis applications. By default, it scans for @edi sHash classes
and configures Spring Data Redis repositories. Regular @onponent beans are not loaded into the
Appl i cati onCont ext . (For more about using Redis with Spring Boot, see "Section 30.1, “Redis™,
earlier in this chapter.)

Tip

A list of the auto-configuration settings that are enabled by @at aRedi sTest can be found in
the appendix.

2.1.0.BUILD-SNAPSHOT Spring Boot 176

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

Spring Boot Reference Guide

The following example shows the @at aRedi sTest annotation in use:

import org.junit.runner. RunWth;

i nport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranmework. boot . test. autoconfigure. data. redi s. Dat aRedi sTest ;
i mport org.springframework.test.context.junit4.SpringRunner;

@RunW t h(Spri ngRunner . cl ass)
@at aRedi sTest
public class Exanpl eDat aRedi sTests {

@\ut owi r ed
private YourRepository repository;

Il

}

Auto-configured Data LDAP Tests

You can use @at aLdapTest to test LDAP applications. By default, it configures an in-memory
embedded LDAP (if available), configures an LdapTenpl ate, scans for @ntry classes, and
configures Spring Data LDAP repositories. Regular @onponent beans are not loaded into the
Appl i cati onCont ext . (For more about using LDAP with Spring Boot, see "Section 30.9, “LDAP™,
earlier in this chapter.)

Tip

A list of the auto-configuration settings that are enabled by @at aLdapTest can be found in the
appendix.

The following example shows the @at aLdapTest annotation in use:

import org.junit.runner. RunWth;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranmework. boot . test. autoconfi gure. data. | dap. Dat aLdapTest ;
i mport org.springframework. | dap. core. LdapTenpl at e;

i mport org.springframework.test.context.junit4.SpringRunner;

@RunW t h(Spri ngRunner . cl ass)
@at aLdapTest
public class Exanpl eDat aLdapTests {

@\ut owi r ed
private LdapTenpl ate | dapTenpl at e;

Il

}

In-memory embedded LDAP generally works well for tests, since it is fast and does not require any
developer installation. If, however, you prefer to run tests against a real LDAP server, you should exclude
the embedded LDAP auto-configuration, as shown in the following example:

import org.junit.runner.RunWth;

i nport org.springframework. boot . aut oconfi gure. | dap. enbedded. EnbeddedLdapAut oConf i gur ati on;
i nport org.springframework. boot . test.autoconfigure. data. | dap. Dat aLdapTest;

i nport org.springfranework.test.context.junit4. SpringRunner;

@RunW t h(SpringRunner. cl ass)
@pat aLdapTest (excl udeAut oConfi gurati on = EnbeddedLdapAut oConfi gurati on. cl ass)
public class Exanpl eDat aLdapNonEnbeddedTests {

}

2.1.0.BUILD-SNAPSHOT Spring Boot 177

Spring Boot Reference Guide

Auto-configured REST Clients

You can use the @RestClient Test annotation to test REST clients. By default, it auto-
configures Jackson, GSON, and Jsonb support, configures a Rest Tenpl at eBui | der, and adds
support for MockRest Servi ceServer. Regular @onponent beans are not loaded into the
Appl i cati onCont ext .

Tip

A list of the auto-configuration settings that are enabled by @Rest Cl i ent Test can be found in
the appendix.

The specific beans that you want to test should be specified by using the val ue or conponent s attribute
of @Rest Cl i ent Test, as shown in the following example:

@RunW t h(SpringRunner. cl ass)
@rest A i ent Test (Renot eVehi cl eDet ai | sServi ce. cl ass)
public class Exanpl eRestdient Test {

@\ut owi r ed
private RenoteVehicleDetail sService service;

@\ut owi r ed
private MdckRest ServiceServer server;

@rest
public void getVehicl eDet ai | sWhenResul t | sSuccessShoul dRet urnDet ai | s()
throws Exception {
this.server. expect(request To("/greet/details"))
. andRespond(wi t hSuccess("hel | 0", Medi aType. TEXT_PLAIN));
String greeting = this.service.callRestService();
assert That (greeting).isEqual To("hell0");

}

Auto-configured Spring REST Docs Tests

You can use the @\ut oConf i gur eRest Docs annotation to use Spring REST Docs in your tests with
Mock MVC or REST Assured. It removes the need for the JUnit rule in Spring REST Docs.

@\ut oConfi gureRest Docs can be used to override the default output directory (target/
gener at ed- sni ppet s if you are using Maven or bui | d/ gener at ed- sni ppet s if you are using
Gradle). It can also be used to configure the host, scheme, and port that appears in any documented
URIs.

Auto-configured Spring REST Docs Tests with Mock MVC

@\t oConfi gur eRest Docs customizes the MockM/c bean to use Spring REST Docs. You can inject
it by using @\ut owi r ed and use it in your tests as you normally would when using Mock MVC and
Spring REST Docs, as shown in the following example:

import org.junit. Test;
i mport org.junit.runner. RunWth;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i mport org. springframework. boot . t est. aut oconfi gure. web. servl et. WebM/cTest ;
i nport org.springframework. http. Medi aType;

i nport org.springfranework.test.context.junit4. SpringRunner;

2.1.0.BUILD-SNAPSHOT Spring Boot 178

https://projects.spring.io/spring-restdocs/

Spring Boot Reference Guide

i mport org.springframework.test.web. servlet. MockMc;

inport static org.springframework.restdocs. nockm/c. MockM/cRest Docunent at i on. docunent ;
inmport static org.springfranmework.test.web.servlet.request. MockM/cRequest Bui | ders. get;
inmport static org.springfranmework.test.web.servlet.result.MckMcResultMtchers. *;

@unW t h(SpringRunner. cl ass)
@ebM/cTest (User Control | er. cl ass)

@\ut oConf i gur eRest Docs

public class UserDocunentationTests {

@\ut owi r ed
private MdckMic nmvc;

@rest
public void listUsers() throws Exception {
this.nvc. perforn(get("/users").accept(MediaType. TEXT_PLAI N))
. andExpect (status().isCk())
.andDo(docunent ("list-users"));

If you require more control over Spring REST Docs configuration than offered by the attributes
of @\wut oConfi gur eRest Docs, you can use a Rest DocsMbckMscConfi gur ati onCust omni zer
bean, as shown in the following example:

@est Configuration
static class Custoni zati onConfiguration
i npl enents Rest DocsMbckM/cConfi gur ati onCust om zer {

@verride
public void customn ze(MockM/cRest Docunent ati onConfi gurer configurer) {
configurer.snippets().w thTenpl at eFor mat (Tenpl at eFor mat s. mar kdown()) ;

}

If you want to make use of Spring REST Docs support for a parameterized output directory, you can
create a Rest Docunent at i onResul t Handl er bean. The auto-configuration calls al waysDo with
this result handler, thereby causing each MockMvc call to automatically generate the default snippets.
The following example shows a Rest Docunent at i onResul t Handl er being defined:

@est Configuration
static class Resul t Handl er Configuration {

@Bean
publ i ¢ Rest Docunent ati onResul t Handl er rest Docunentation() {
return MockM/cRest Docunent ati on. docunent (" { net hod- nane}");

}

Auto-configured Spring REST Docs Tests with REST Assured

@\ut oConfi gur eRest Docs makes a Request Speci fi cati on bean, preconfigured to use Spring
REST Docs, available to your tests. You can inject it by using @\ut owi r ed and use it in your tests
as you normally would when using REST Assured and Spring REST Docs, as shown in the following
example:

i nport io.restassured. specification. Request Speci fi cati on;
import org.junit. Test;
import org.junit.runner.RunWth;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

2.1.0.BUILD-SNAPSHOT Spring Boot 179

Spring Boot Reference Guide

i mport org.springframework. boot . test.autoconfigure.restdocs. Aut oConfi gur eRest Docs;
i mport org.springframework. boot . t est. cont ext. Spri ngBoot Test ;

i nport org.springframework. boot . test.context. SpringBoot Test. WbEnvironnent;

i nport org.springfranework. boot . web. server. Local Server Port;

i nport org.springfranework.test.context.junit4. SpringRunner;

inport static io.restassured. Rest Assured. gi ven;
inport static org.hantrest. CoreMatchers.is;
inport static org.springframework.restdocs.restassured3. Rest Assur edRest Docunent ati on. docunent ;

@unW t h(Spri ngRunner . cl ass)

@pr i ngBoot Test (webEnvi ronnent = WebEnvi r onment . RANDOM_PORT)
@\ut oConf i gur eRest Docs

public class UserDocunmentationTests {

@.ocal Server Port
private int port;

@\ut owi red
private Request Specification docunentati onSpec;

@rest
public void listUsers() {
gi ven(this.docunmentati onSpec).filter(document("list-users")).wen()
.port(this.port).get("/").then().assertThat().statusCode(is(200));

If you require more control over Spring REST Docs configuration than offered by the attributes of
@\ut oConfi gur eRest Docs, aRest DocsRest Assur edConf i gur ati onCust omi zer beancanbe
used, as shown in the following example:

@est Configuration
public static class Custom zationConfiguration
i npl enent s Rest DocsRest Assur edConf i gur at i onCust om zer {

@verride
public void custoni ze(Rest Assur edRest Docunent ati onConfi gurer configurer) {
configurer.snippets().w thTenpl at eFor mat (Tenpl at eFor mat s. mar kdown()) ;

}

Additional Auto-configuration and Slicing

Each slice provides one or more @\ut oConfi gur e...annotations that namely defines the auto-
configurations that should be included as part of a slice. Additional auto-configurations can be added by
creating a custom @\ut oConf i gur e..annotation or simply by adding @ npor t Aut oConf i gurati on
to the test as shown in the following example:

@unW 't h(Spri ngRunner . cl ass)

@dbcTest

@ npor t Aut oConf i gurati on(I nt egrati onAut oConfi gurati on.cl ass)
public class Exanpl eJdbcTests {

}

Note

Make sure to not use the regular @ nport annotation to import auto-configurations as they are
handled in a specific way by Spring Boot.

2.1.0.BUILD-SNAPSHOT Spring Boot 180

Spring Boot Reference Guide

User Configuration and Slicing

If you structure your code in a sensible way, your @spr i ngBoot Appl i cat i on class is used by default
as the configuration of your tests.

It then becomes important not to litter the application’s main class with configuration settings that are
specific to a particular area of its functionality.

Assume that you are using Spring Batch and you rely on the auto-configuration for it. You could define
your @pr i ngBoot Appl i cati on as follows:

@pr i ngBoot Appl i cati on
@Enabl eBat chProcessi ng
public class Sanpl eApplication { ... }

Because this class is the source configuration for the test, any slice test actually tries to start Spring
Batch, which is definitely not what you want to do. A recommended approach is to move that area-
specific configuration to a separate @onf i gur at i on class at the same level as your application, as
shown in the following example:

@onfiguration
@Enabl eBat chProcessi ng
public class BatchConfiguration { ... }

Note

Depending on the complexity of your application, you may either have a single @onf i gur ati on
class for your customizations or one class per domain area. The latter approach lets you enable
it in one of your tests, if necessary, with the @ npor t annotation.

Another source of confusion is classpath scanning. Assume that, while you structured your code in a
sensible way, you need to scan an additional package. Your application may resemble the following
code:

@Bpr i ngBoot Appl i cati on
@onponent Scan({ "com exanpl e. app", "org.acne.another" })
public class Sanpl eApplication { ... }

Doing so effectively overrides the default component scan directive with the side effect of scanning those
two packages regardless of the slice that you chose. For instance, a @at aJpaTest seems to suddenly
scan components and user configurations of your application. Again, moving the custom directive to a
separate class is a good way to fix this issue.

Tip

If this is not an option for you, you can create a @pr i ngBoot Confi gur ati on somewhere in
the hierarchy of your test so that it is used instead. Alternatively, you can specify a source for your
test, which disables the behavior of finding a default one.

Using Spock to Test Spring Boot Applications

If you wish to use Spock to test a Spring Boot application, you should add a dependency on Spock’s
spock- spri ng module to your application’s build. spock- spri ng integrates Spring’s test framework
into Spock. It is recommended that you use Spock 1.1 or later to benefit from a number of improvements

2.1.0.BUILD-SNAPSHOT Spring Boot 181

Spring Boot Reference Guide

to Spock’s Spring Framework and Spring Boot integration. See the documentation for Spock’s Spring
module for further details.

44 .4 Test Utilities

A few test utility classes that are generally useful when testing your application are packaged as part
of spri ng- boot .

ConfigFileApplicationContextinitializer

Confi gFi |l eApplicationContextlnitializerisanApplicationContextlnitializer that
you can apply to your tests to load Spring Boot appl i cati on. properti es files. You can use it when
you do not need the full set of features provided by @pri ngBoot Test, as shown in the following
example:

@ont ext Confi guration(cl asses = Config.cl ass,
initializers = ConfigFileApplicationContextlnitializer.class)

Note

Using Confi gFi | eApplicati onContextlnitializer alone does not provide support for
@/al ue("${.}") injection. Its only job is to ensure that appl i cati on. properti es files
are loaded into Spring’s Envi ronnent . For @/al ue support, you need to either additionally
configure a Pr oper t ySour cesPl acehol der Conf i gur er or use @pr i ngBoot Test , which
auto-configures one for you.

TestPropertyValues

Test PropertyVal ues lets you quickly add properties to a Confi gurabl eEnvi ronment or
Confi gur abl eAppl i cati onCont ext . You can call it with key=val ue strings, as follows:

Test PropertyVal ues. of ("org=Spring", "nane=Boot").applyTo(env);

OutputCapture

Qut put Capt ur e is a JUnit Rul e that you can use to capture Syst em out and Syst em er r output.
You can declare the capture as a @rul e and then use t oSt ri ng() for assertions, as follows:

inmport org.junit.Rule;
import org.junit. Test;
i nport org.springfranmework. boot. test. rul e. Qut put Capt ure;

i nport static org. hancrest. Matchers. *;
inport static org.junit.Assert.*;

public class MyTest {

@Rul e
public CQutputCapture capture = new Qutput Capture();

@rest

public void testName() throws Exception {
Systemout.printin("Hello World!");

assert That (capture.toString(), containsString("Wrld"));

}

2.1.0.BUILD-SNAPSHOT Spring Boot 182

http://spockframework.org/spock/docs/1.1/modules.html
http://spockframework.org/spock/docs/1.1/modules.html

Spring Boot Reference Guide

TestRestTemplate
Tip

Spring Framework 5.0 provides a new WebTest Cl i ent that works for WebFlux integration tests
and both WebFlux and MVC end-to-end testing. It provides a fluent API for assertions, unlike
Test Rest Tenpl at e.

Test Rest Tenpl at e is a convenience alternative to Spring’s Rest Tenpl at e that is useful in
integration tests. You can get a vanilla template or one that sends Basic HTTP authentication (with a
username and password). In either case, the template behaves in a test-friendly way by not throwing
exceptions on server-side errors. It is recommended, but not mandatory, to use the Apache HTTP Client
(version 4.3.2 or better). If you have that on your classpath, the Test Rest Tenpl at e responds by
configuring the client appropriately. If you do use Apache’s HTTP client, some additional test-friendly
features are enabled:

» Redirects are not followed (so you can assert the response location).
» Cookies are ignored (so the template is stateless).

Test Rest Tenpl at e can be instantiated directly in your integration tests, as shown in the following
example:

public class MyTest {
private TestRest Tenplate tenplate = new Test Rest Tenpl ate();

@est
public void testRequest() throws Exception {
Ht t pHeaders headers = this.tenplate.getForEntity(
"http://myhost.exanpl e. conl exanpl e", String.cl ass). get Headers();
assert That (headers. get Locati on()). hasHost ("ot her. exanpl e. conl') ;

}

Alternatively, if you use the @pr i ngBoot Test annotation with WebEnvi r onmrent . RANDOM_PCORT or
WebEnvi r onment . DEFI NED_PORT, you can inject a fully configured Test Rest Tenpl at e and start
using it. If necessary, additional customizations can be applied through the Rest Tenpl at eBui | der
bean. Any URLSs that do not specify a host and port automatically connect to the embedded server, as
shown in the following example:

@RunW t h(Spri ngRunner. cl ass)
@pr i ngBoot Test (webEnvi ronnent = WebEnvi r onment . RANDOM_PORT)
public class Sanpl eWebC ientTests {

@\ut owi r ed
private TestRest Tenpl ate tenpl ate;

@est
public void testRequest() {
Ht t pHeaders headers = this.tenpl ate.getForEntity("/exanple", String.class)
. get Headers();
assert That (headers. get Locati on()). hasHost ("ot her. exanpl e. conl') ;

}

@est Configuration
static class Config {

@Bean

2.1.0.BUILD-SNAPSHOT Spring Boot 183

Spring Boot Reference Guide

publ i c RestTenpl at eBui | der rest Tenpl at eBui | der () {
return new Rest Tenpl at eBui | der (). set Connect Ti meout (Dur at i on. of Seconds(1))
. set ReadTi neout (Dur ati on. of Seconds(1));

2.1.0.BUILD-SNAPSHOT Spring Boot 184

Spring Boot Reference Guide

45. WebSockets

Spring Boot provides WebSockets auto-configuration for embedded Tomcat, Jetty, and Undertow. If
you deploy a war file to a standalone container, Spring Boot assumes that the container is responsible
for the configuration of its WebSocket support.

Spring Framework provides rich WebSocket support for MVC web applications that can be easily
accessed through the spri ng- boot - st art er - websocket module.

WebSocket supportis also available for reactive web applications and requires to include the WebSocket
API alongside spri ng- boot - st art er - webf | ux:

<dependency>
<gr oupl d>j avax. websocket </ gr oupl d>
<artifact|d>j avax. websocket - api </ artifact!d>
</ dependency>

2.1.0.BUILD-SNAPSHOT Spring Boot 185

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web.html#websocket
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/web-reactive.html#webflux-websocket

Spring Boot Reference Guide

46. Web Services

Spring Boot provides Web Services auto-configuration so that all you must do is define your Endpoi nt s.

The Spring Web Services features can be easily accessed with the spri ng-boot-starter-
webser vi ces module.

Si npl eWsdl 11Def i ni ti on and Si npl eXsdSchema beans can be automatically created for your
WSDLs and XSDs respectively. To do so, configure their location, as shown in the following example:

spring. webservi ces. wsdl -1 ocati ons=cl asspat h: / wsdl

2.1.0.BUILD-SNAPSHOT Spring Boot 186

https://docs.spring.io/spring-ws/docs/3.0.4.RELEASE/reference/

Spring Boot Reference Guide

47. Calling Web Services with
WebServi ceTenpl at e

If you need to call remote Web services from your application, you can use the WebSer vi ceTenpl at e
class. Since WebSer vi ceTenpl at e instances often need to be customized before being used, Spring
Boot does not provide any single auto-configured WebSer vi ceTenpl at e bean. It does, however, auto-
configure a WebSer vi ceTenpl at eBui | der, which can be used to create WebSer vi ceTenpl at e
instances when needed.

The following code shows a typical example:

@ervi ce
public class MyService {

private final WebServiceTenpl ate webServi ceTenpl at e;

public MyService(WebServi ceTenpl at eBui | der webSer vi ceTenpl at eBui | der) {
t hi s. webServi ceTenpl ate = webServi ceTenpl at eBui | der . bui I d() ;

}
public Detail sResp someWsCal | (Detail sReq detail sReq) {

return (Detail sResp) this.webServiceTenpl ate. mar shal SendAndRecei ve(detai | sReq, new
SoapActi onCal | back(ACTI ON)) ;

}

By default, WebSer vi ceTenpl at eBui | der detects a suitable HTTP-based
WebSer vi ceMessageSender using the available HTTP client libraries on the classpath. You can also
customize read and connection timeouts as follows:

@ean
public WebServi ceTenpl at e webSer vi ceTenpl at e(WebSer vi ceTenpl at eBui | der bui | der) {
return buil der. messageSender s(new Htt pWWebSer vi ceMessageSender Bui | der ()
. set Connect Ti neout (5000) . set ReadTi neout (2000) . bui I d()) . bui I d();

2.1.0.BUILD-SNAPSHOT Spring Boot 187

https://docs.spring.io/spring-ws/docs/3.0.4.RELEASE/reference/#client-web-service-template

Spring Boot Reference Guide

48. Creating Your Own Auto-configuration

If you work in a company that develops shared libraries, or if you work on an open-source or commercial
library, you might want to develop your own auto-configuration. Auto-configuration classes can be
bundled in external jars and still be picked-up by Spring Boot.

Auto-configuration can be associated to a “starter” that provides the auto-configuration code as well as
the typical libraries that you would use with it. We first cover what you need to know to build your own
auto-configuration and then we move on to the typical steps required to create a custom starter.

Tip

A demo project is available to showcase how you can create a starter step-by-step.

48.1 Understanding Auto-configured Beans

Under the hood, auto-configuration is implemented with standard @onf i gur at i on classes. Additional
@condi ti onal annotations are used to constrain when the auto-configuration should apply. Usually,
auto-configuration classes use @Conditional OnC ass and @Conditi onal OnM ssi ngBean
annotations. This ensures that auto-configuration applies only when relevant classes are found and
when you have not declared your own @onf i gur ati on.

You can browse the source code of spri ng- boot - aut oconf i gur e to see the @onfi gurati on
classes that Spring provides (see the META- | NF/ spri ng. f act ori es file).

48.2 Locating Auto-configuration Candidates

Spring Boot checks for the presence of a META- | NF/ spri ng. f act ori es file within your published jar.
The file should list your configuration classes under the Enabl eAut oConfi gur at i on key, as shown
in the following example:

or g. spri ngf ramewor k. boot . aut oconf i gur e. Enabl eAut oConfi gur ati on=\
com nycorp. | i bx. aut oconfi gure. Li bXAut oConfi gurati on, \
com mycor p. | i bx. aut oconfi gur e. Li bXWWebAut oConfi gurati on

You can use the @AutoConfigureAfter or @\t oConfigureBefore annotations if your
configuration needs to be applied in a specific order. For example, if you provide web-specific
configuration, your class may need to be applied after WebMscAut oConf i gur at i on.

If you want to order certain auto-configurations that should not have any direct knowledge of each other,
you can also use @\ut oConfi gur eOr der. That annotation has the same semantic as the regular
@ der annotation but provides a dedicated order for auto-configuration classes.

Note

Auto-configurations must be loaded that way only. Make sure that they are defined in a specific
package space and that, in particular, they are never the target of component scanning.

48.3 Condition Annotations

You almost always want to include one or more @ondi t i onal annotations on your auto-configuration
class. The @ondi ti onal OnM ssi ngBean annotation is one common example that is used to allow
developers to override auto-configuration if they are not happy with your defaults.

2.1.0.BUILD-SNAPSHOT Spring Boot 188

https://github.com/snicoll-demos/spring-boot-master-auto-configuration
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/resources/META-INF/spring.factories
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureAfter.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureBefore.java

Spring Boot Reference Guide

Spring Boot includes a number of @ondi t i onal annotations that you can reuse in your own code by
annotating @onf i gur at i on classes or individual @ean methods. These annotations include:

» the section called “Class Conditions”

» the section called “Bean Conditions”

» the section called “Property Conditions”

 the section called “Resource Conditions”

» the section called “Web Application Conditions”

» the section called “SpEL Expression Conditions”

Class Conditions

The @ondi ti onal OnCl ass and @ondi t i onal OnM ssi ngd ass annotations let configuration be
included based on the presence or absence of specific classes. Due to the fact that annotation metadata
is parsed by using ASM, you can use the val ue attribute to refer to the real class, even though that class
might not actually appear on the running application classpath. You can also use the nane attribute if
you prefer to specify the class name by using a St ri ng value.

Tip

If you use @ondi ti onal OnC ass or @ondi ti onal OnM ssi ngC ass as a part of a meta-
annotation to compose your own composed annotations, you must use nane as referring to the
class in such a case is not handled.

Bean Conditions

The @ondi ti onal OnBean and @ondi ti onal OnM ssi ngBean annotations let a bean be included
based on the presence or absence of specific beans. You can use the val ue attribute to specify
beans by type or name to specify beans by name. The search attribute lets you limit the
Appl i cati onCont ext hierarchy that should be considered when searching for beans.

When placed on a @ean method, the target type defaults to the return type of the method, as shown
in the following example:

@onfi guration
public class MyAutoConfiguration {

@ean
@Condi ti onal OnM ssi ngBean
public MyService nyService() { ... }

In the preceding example, the mySer vi ce bean is going to be created if no bean of type MySer vi ce
is already contained in the Appl i cati onCont ext .

Tip

You need to be very careful about the order in which bean definitions are added, as
these conditions are evaluated based on what has been processed so far. For this reason,

2.1.0.BUILD-SNAPSHOT Spring Boot 189

http://asm.ow2.org/

Spring Boot Reference Guide

we recommend using only @onditi onal OnBean and @Conditi onal OnM ssi ngBean
annotations on auto-configuration classes (since these are guaranteed to load after any user-
defined bean definitions have been added).

Note

@condi ti onal OnBean and @condi ti onal OnM ssi ngBean do not prevent
@configuration classes from being created. The only difference between using these
conditions at the class level and marking each contained @ean method with the annotation is
that the former prevents registration of the @onf i gur ati on class as a bean if the condition
does not match.

Property Conditions

The @conditi onal OnProperty annotation lets configuration be included based on a Spring
Environment property. Use the prefi x and nane attributes to specify the property that should be
checked. By default, any property that exists and is not equal to f al se is matched. You can also create
more advanced checks by using the havi ngVal ue and mat chl f M ssi ng attributes.

Resource Conditions

The @Condi ti onal OnResour ce annotation lets configuration be included only when a specific
resource is present. Resources can be specified by using the usual Spring conventions, as shown in
the following example: fi | e: / hone/ user/test. dat.

Web Application Conditions
The @ondi t i onal OnWebAppl i cati on and @ondi ti onal OnNot WebAppl i cat i on annotations
let configuration be included depending on whether the application is a “web application”. A web

application is any application that uses a Spring WebAppl i cati onCont ext, defines a sessi on
scope, or has a St andar dSer vl et Envi ronnent .

SpEL Expression Conditions

The @ondi ti onal OnExpr essi on annotation lets configuration be included based on the result of
a SpEL expression.

48.4 Testing your Auto-configuration

An auto-configuration can be affected by many factors: user configuration (@ean definition and
Envi ronnent customization), condition evaluation (presence of a particular library), and others.
Concretely, each test should create a well defined ApplicationContext that represents a
combination of those customizations. Appl i cat i onCont ext Runner provides a great way to achieve
that.

Appl i cati onCont ext Runner is usually defined as a field of the test class to gather the base,
common configuration. The following example makes sure that User Ser vi ceAut oConf i gur ati on
is always invoked:

private final ApplicationContextRunner contextRunner = new Appl i cati onCont ext Runner ()
. Wi t hConfi guration(AutoConfigurations. of (User Servi ceAut oConfi guration. cl ass));

2.1.0.BUILD-SNAPSHOT Spring Boot 190

https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/core.html#expressions

Spring Boot Reference Guide

Tip

If multiple auto-configurations have to be defined, there is no need to order their declarations as
they are invoked in the exact same order as when running the application.

Each test can use the runner to represent a particular use case. For instance, the sample below invokes
a user configuration (User Conf i gur at i on) and checks that the auto-configuration backs off properly.
Invoking r un provides a callback context that can be used with Assert 4J.

@est
public void defaultServiceBacksOff () {
t hi s. cont ext Runner. w t hUser Confi gurati on(User Confi gurati on. cl ass)
.run((context) -> {
assert That (cont ext). hasSi ngl eBean(User Servi ce. cl ass);
assert That (cont ext . get Bean(User Servi ce. cl ass)) . i sSaneAs(
cont ext . get Bean(User Confi gurati on. cl ass). myUser Service());
s
}

@onfiguration
static class UserConfiguration {

@Bean
public UserService nmyUserService() {
return new User Service("m ne");

}

It is also possible to easily customize the Envi r onnent , as shown in the following example:

@est
public void servi ceNameCanBeConfi gured() {
t hi s. cont ext Runner. w t hPropertyVal ues("user. name=t est 123").run((context) -> {
assert That (cont ext). hasSi ngl eBean(User Servi ce. cl ass) ;
assert That (cont ext . get Bean(User Ser vi ce. cl ass) . get Nane()) . i sEqual To("test123");
b
}

The runner can also be used to display the Conditi onEval uati onReport. The report
can be printed at | NFO or DEBUG level. The following example shows how to use the
Condi ti onEval uati onReport Loggi ngLi st ener to print the report in auto-configuration tests.

@est
public void autoConfigTest {
Condi ti onEval uati onReport Loggi ngLi stener initializer = new ConditionEval uati onReportLoggi ngLi st ener (
LogLevel . I NFO) ;
Appl i cati onCont ext Runner cont ext Runner = new Appl i cati onCont ext Runner ()
.withlnitializer(initializer).run((context -> {
/1 Do sonething...

)

Simulating a Web Context

If you need to test an auto-configuration that only operates in a Servlet
or Reactive web application context, use the WebApplicationContextRunner or
React i veWebAppl i cati onCont ext Runner respectively.

2.1.0.BUILD-SNAPSHOT Spring Boot 191

Spring Boot Reference Guide

Overriding the Classpath

Itis also possible to test what happens when a particular class and/or package is not present at runtime.
Spring Boot shipswitha Fi | t er edC assLoader that can easily be used by the runner. In the following
example, we assert that if User Ser vi ce is not present, the auto-configuration is properly disabled:

@rest
public void servicelslgnoredlfLibrarylsNotPresent() {
thi s. context Runner.w t hCl assLoader (new Fi | t eredC assLoader (User Servi ce. cl ass))
.run((context) -> assert T That (context).doesNot HaveBean("user Service"));

48.5 Creating Your Own Starter

A full Spring Boot starter for a library may contain the following components:
e The aut oconf i gur e module that contains the auto-configuration code.

» The st arter module that provides a dependency to the aut oconf i gur e module as well as the
library and any additional dependencies that are typically useful. In a nutshell, adding the starter
should provide everything needed to start using that library.

Tip

You may combine the auto-configuration code and the dependency management in a single
module if you do not need to separate those two concerns.

Naming

You should make sure to provide a proper namespace for your starter. Do not start your module names
with spri ng- boot , even if you use a different Maven gr oupl d. We may offer official support for the
thing you auto-configure in the future.

As a rule of thumb, you should name a combined module after the starter. For example, assume that
you are creating a starter for "acme" and that you name the auto-configure module acne- spri ng-
boot - aut oconf i gur e and the starter acrre- spri ng- boot - st art er . If you only have one module
that combines the two, name it acrre- spri ng- boot -starter.

Also, if your starter provides configuration keys, use a uniqgue namespace for them. In particular, do not
include your keys in the namespaces that Spring Boot uses (such as ser ver, managemnent, spri ng,
and so on). If you use the same namespace, we may modify these nhamespaces in the future in ways
that break your modules.

Make sure to trigger meta-data generation so that IDE assistance is available for your keys as
well. You may want to review the generated meta-data (META-1 NF/ spri ng-confi gurati on-
nmet adat a. j son) to make sure your keys are properly documented.

aut oconfi gur e Module
The aut oconf i gur e module contains everything that is necessary to get started with the library. It may

also contain configuration key definitions (such as @onf i gur ati onProperti es) and any callback
interface that can be used to further customize how the components are initialized.

2.1.0.BUILD-SNAPSHOT Spring Boot 192

Spring Boot Reference Guide

Tip

You should mark the dependencies to the library as optional so that you can include the
aut oconfi gur e module in your projects more easily. If you do it that way, the library is not
provided and, by default, Spring Boot backs off.

Spring Boot uses an annotation processor to collect the conditions on auto-configurations in a metadata
file (META- 1 NF/ spri ng- aut oconfi gur e- net adat a. properti es). If that file is present, it is used
to eagerly filter auto-configurations that do not match, which will improve startup time. Itis recommended
to add the following dependency in a module that contains auto-configurations:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!ld>spring-boot-autoconfigure-processor</artifactld>
<opti onal >t rue</ opti onal >

</ dependency>

With Gradle 4.5 and earlier, the dependency should be declared in the conpi | eOnl y configuration,
as shown in the following example:

dependenci es {
conpi |l eOnly "org. springframewor k. boot : spri ng- boot - aut oconf i gur e- processor"

}

With Gradle 4.6 and later, the dependency should be declared in the annot ati onProcessor
configuration, as shown in the following example:

dependenci es {
annot ati onProcessor "org. springframework. boot: spri ng- boot - aut oconf i gur e- processor"

}

Starter Module

The starter is really an empty jar. Its only purpose is to provide the necessary dependencies to work
with the library. You can think of it as an opinionated view of what is required to get started.

Do not make assumptions about the project in which your starter is added. If the library you are auto-
configuring typically requires other starters, mention them as well. Providing a proper set of default
dependencies may be hard if the number of optional dependencies is high, as you should avoid including
dependencies that are unnecessary for a typical usage of the library. In other words, you should not
include optional dependencies.

Note

Either way, your starter must reference the core Spring Boot starter (spri ng- boot - starter)
directly or indirectly (i.e. no need to add it if your starter relies on another starter). If a project
is created with only your custom starter, Spring Boot's core features will be honoured by the
presence of the core starter.

2.1.0.BUILD-SNAPSHOT Spring Boot 193

Spring Boot Reference Guide

49. Kotlin support

Kotlin is a statically-typed language targeting the JVM (and other platforms) which allows writing concise
and elegant code while providing interoperability with existing libraries written in Java.

Spring Boot provides Kotlin support by leveraging the support in other Spring projects such as Spring
Framework, Spring Data, and Reactor. See the Spring Framework Kotlin support documentation for
more information.

The easiest way to start with Spring Boot and Kotlin is to follow this comprehensive tutorial. You can
create new Kotlin projects via start.spring.io. Feel free to join the #spring channel of Kotlin Slack or ask
a question with the spri ng and kot | i n tags on Stack Overflow if you need support.

49.1 Requirements

Spring Boot supports Kotlin 1.2.x. To use Kotlin, org. j etbrai ns. kotlin: kotlin-stdlib and
org.jetbrains.kotlin:kotlin-reflect must be present on the classpath. The kot | i n-
stdlibvariants kot lin-stdlib-jdk7 andkot!|in-stdlib-jdk8 can also be used.

Since Kotlin classes are final by default, you are likely to want to configure kotlin-spring plugin in order
to automatically open Spring-annotated classes so that they can be proxied.

Jackson’s Kotlin module is required for serializing / deserializing JSON data in Kotlin. It is automatically
registered when found on the classpath. A warning message is logged if Jackson and Kotlin are present
but the Jackson Kotlin module is not.

Tip

These dependencies and plugins are provided by default if one bootstraps a Kotlin project on
start.spring.io.

49.2 Null-safety

One of Kotlin’s key features is null-safety. It deals with nul | values at compile time rather than
deferring the problem to runtime and encountering a Nul | Poi nt er Except i on. This helps to eliminate
a common source of bugs without paying the cost of wrappers like Opt i onal . Kotlin also allows using
functional constructs with nullable values as described in this comprehensive guide to null-safety in
Kotlin.

Although Java does not allow one to express null-safety in its type system, Spring Framework, Spring
Data, and Reactor now provide null-safety of their API via tooling-friendly annotations. By default, types
from Java APIs used in Kotlin are recognized as platform types for which null-checks are relaxed. Kotlin’s
support for ISR 305 annotations combined with nullability annotations provide null-safety for the related
Spring APl in Kotlin.

The JSR 305 checks can be configured by adding the - Xj sr 305 compiler flag with the following options:
- Xj sr305={strict|warn|ignore}. The default behavior is the same as - Xj sr 305=war n. The
strict value is required to have null-safety taken in account in Kotlin types inferred from Spring API
but should be used with the knowledge that Spring API nullability declaration could evolve even between
minor releases and more checks may be added in the future).

2.1.0.BUILD-SNAPSHOT Spring Boot 194

https://kotlinlang.org
https://kotlinlang.org/docs/reference/java-interop.html
https://docs.spring.io/spring/docs/5.1.0.RELEASE/spring-framework-reference/languages.html#kotlin
https://spring.io/guides/tutorials/spring-boot-kotlin/
https://start.spring.io/#!language=kotlin
http://slack.kotlinlang.org/
https://stackoverflow.com/questions/tagged/spring+kotlin
https://discuss.kotlinlang.org/t/classes-final-by-default/166
https://kotlinlang.org/docs/reference/compiler-plugins.html#spring-support
https://github.com/FasterXML/jackson-module-kotlin
https://start.spring.io/#!language=kotlin
https://kotlinlang.org/docs/reference/null-safety.html
http://www.baeldung.com/kotlin-null-safety
http://www.baeldung.com/kotlin-null-safety
https://kotlinlang.org/docs/reference/java-interop.html#null-safety-and-platform-types
https://kotlinlang.org/docs/reference/java-interop.html#jsr-305-support
https://kotlinlang.org/docs/reference/java-interop.html#jsr-305-support

Spring Boot Reference Guide

Warning

Generic type arguments, varargs and array elements nullability are not yet supported. See
SPR-15942 for up-to-date information. Also be aware that Spring Boot's own API is not yet
annotated.

49.3 Kotlin API

runApplication

Spring Boot provides an idiomatic way to run an application with
runAppl i cati on<MyAppl i cati on>(*args) as shown in the following example:

import org.springframework. boot. aut oconfi gure. Spri ngBoot Appl i cati on
import org.springframework. boot. runApplication

@ppr i ngBoot Appl i cati on
class MyApplication

fun main(args: Array<String>) {
runAppl i cati on<MyAppl i cati on>(*args)
}

This is a drop-in replacement for Spri ngApplication.run(M/Application::class.java,
*ar gs) . It also allows customization of the application as shown in the following example:

runAppl i cati on<MyAppl i cation>(*args) {
set Banner Mode(OFF)

}

Extensions

Kotlin extensions provide the ability to extend existing classes with additional functionality. The Spring
Boot Kotlin APl makes use of these extensions to add new Kotlin specific conveniences to existing APIs.

Test Rest Tenpl at e extensions, similar to those provided by Spring Framework for Rest Oper at i ons
in Spring Framework, are provided. Among other things, the extensions make it possible to take
advantage of Kotlin reified type parameters.

49.4 Dependency management

In order to avoid mixing different version of Kotlin dependencies on the classpath, dependency
management of the following Kotlin dependencies is provided:

* kotlin-reflect

e kotlin-runtinme

o kotlin-stdlib

* kotlin-stdlib-jdk7
e kotlin-stdlib-jdk8
e kotlin-stdlib-jre7

e kotlin-stdlib-jre8

2.1.0.BUILD-SNAPSHOT Spring Boot 195

https://jira.spring.io/browse/SPR-15942
https://github.com/spring-projects/spring-boot/issues/10712
https://github.com/spring-projects/spring-boot/issues/10712
https://kotlinlang.org/docs/reference/extensions.html

Spring Boot Reference Guide

With Maven, the Kotlin version can be customized via the kotlin.version property and
plugin management is provided for kot | i n- maven- pl ugi n. With Gradle, the Spring Boot plugin
automatically aligns the kot | i n. ver si on with the version of the Kotlin plugin.

49.5 @onfi gurati onProperties

@Confi gurationProperties currently only works with | at ei nit or nullable var properties (the
former is recommended), since immutable classes initialized by constructors are not yet supported.

@ronfigurationProperties("exanple.kotlin")
cl ass KotlinExanpl eProperties {

lateinit var name: String
lateinit var description: String
val nyService = MyService()
class MyService {

lateinit var api Token: String

lateinit var uri: UR

Tip

To generate your own metadata using the annotation processor, kapt should be configured with
the spri ng- boot - confi gurati on- processor dependency.

49.6 Testing

While it is possible to use JUnit 4 (the default provided by spri ng- boot - st art er - t est) to test Kotlin
code, JUnit 5 is recommended. JUnit 5 enables a test class to be instantiated once and reused for all
of the class’s tests. This makes it possible to use @ef or eAl | and @Aft er Al | annotations on non-
static methods, which is a good fit for Kotlin.

To use JUnit 5, exclude j uni t: j unit dependency from spri ng- boot -starter-test, add JUnit
5 dependencies, and configure the Maven or Gradle plugin accordingly. See the JUnit 5 documentation
for more details. You also need to switch test instance lifecycle to "per-class".

49.7 Resources

Further reading

» Kotlin language reference

Kotlin Slack (with a dedicated #spring channel)

Stackoverflow with spri ng and kot | i n tags

Try Kotlin in your browser

Kotlin blog

2.1.0.BUILD-SNAPSHOT Spring Boot 196

https://github.com/spring-projects/spring-boot/issues/8762
https://kotlinlang.org/docs/reference/kapt.html
https://junit.org/junit5/docs/current/user-guide/#dependency-metadata-junit-jupiter-samples
https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-instance-lifecycle-changing-default
https://kotlinlang.org/docs/reference/
http://slack.kotlinlang.org/
https://stackoverflow.com/questions/tagged/spring+kotlin
https://try.kotlinlang.org/
https://blog.jetbrains.com/kotlin/

Spring Boot Reference Guide

* Awesome Kaotlin

Tutorial: building web applications with Spring Boot and Kotlin

» Developing Spring Boot applications with Kotlin

* A Geospatial Messenger with Kotlin, Spring Boot and PostgreSQL

 Introducing Kotlin support in Spring Framework 5.0

* Spring Framework 5 Kotlin APIs, the functional way

Examples
* spring-boot-kotlin-demo: regular Spring Boot + Spring Data JPA project
e mixit; Spring Boot 2 + WebFlux + Reactive Spring Data MongoDB

 spring-kotlin-fullstack: WebFlux Kotlin fullstack example with Kotlin2js for frontend instead of
JavaScript or TypeScript

* spring-petclinic-kotlin: Kotlin version of the Spring PetClinic Sample Application

 spring-kotlin-deepdive: a step by step migration for Boot 1.0 + Java to Boot 2.0 + Kotlin

2.1.0.BUILD-SNAPSHOT Spring Boot 197

https://kotlin.link/
https://spring.io/guides/tutorials/spring-boot-kotlin/
https://spring.io/blog/2016/02/15/developing-spring-boot-applications-with-kotlin
https://spring.io/blog/2016/03/20/a-geospatial-messenger-with-kotlin-spring-boot-and-postgresql
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/08/01/spring-framework-5-kotlin-apis-the-functional-way
https://github.com/sdeleuze/spring-boot-kotlin-demo
https://github.com/mixitconf/mixit
https://github.com/sdeleuze/spring-kotlin-fullstack
https://github.com/spring-petclinic/spring-petclinic-kotlin
https://github.com/sdeleuze/spring-kotlin-deepdive

Spring Boot Reference Guide

50. What to Read Next

If you want to learn more about any of the classes discussed in this section, you can check out the Spring
Boot API documentation or you can browse the source code directly. If you have specific questions,
take a look at the how-to section.

If you are comfortable with Spring Boot's core features, you can continue on and read about production-
ready features.

2.1.0.BUILD-SNAPSHOT Spring Boot 198

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api
https://github.com/spring-projects/spring-boot/tree/master

Part V. Spring Boot Actuator:
Production-ready features

Spring Boot includes a number of additional features to help you monitor and manage your application
when you push it to production. You can choose to manage and monitor your application by using HTTP
endpoints or with IMX. Auditing, health, and metrics gathering can also be automatically applied to your
application.

Spring Boot Reference Guide

51. Enabling Production-ready Features

The spri ng-boot - act uat or module provides all of Spring Boot’s production-ready features. The
simplest way to enable the features is to add a dependency to the spri ng- boot - st art er - act uat or
‘Starter’.

Definition of Actuator

An actuator is a manufacturing term that refers to a mechanical device for moving or controlling
something. Actuators can generate a large amount of motion from a small change.

To add the actuator to a Maven based project, add the following ‘Starter’ dependency:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-actuator</artifactld>
</ dependency>
</ dependenci es>

For Gradle, use the following declaration:

dependenci es {
conpi | e("org. springfranmework. boot : spring-boot-starter-actuator")

}

2.1.0.BUILD-SNAPSHOT Spring Boot 200

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator

Spring Boot Reference Guide

52. Endpoints

Actuator endpoints let you monitor and interact with your application. Spring Boot includes a humber
of built-in endpoints and lets you add your own. For example, the heal t h endpoint provides basic
application health information.

Each individual endpoint can be enabled or disabled. This controls whether or not the endpoint is created
and its bean exists in the application context. To be remotely accessible an endpoint also has to be
exposed via JMX or HTTP. Most applications choose HTTP, where the ID of the endpoint along with

a prefix of / act uat or is mapped to a URL. For example, by default, the heal t h endpoint is mapped
to/actuator/ heal t h.

The following technology-agnostic endpoints are available:

ID Description Enabled by default

audi tevents Exposes audit events information for the current Yes
application.

beans Displays a complete list of all the Spring beans in your Yes
application.

caches Exposes available caches. Yes

condi tions Shows the conditions that were evaluated on Yes
configuration and auto-configuration classes and the
reasons why they did or did not match.

confi gprops Displays a collated list of all Yes
@confi gurati onProperti es.

env Exposes properties from Spring’s Yes
Conf i gur abl eEnvi ronnent .

fl yway Shows any Flyway database migrations that have Yes
been applied.

heal th Shows application health information. Yes

httptrace Displays HTTP trace information (by default, the last Yes
100 HTTP request-response exchanges).

info Displays arbitrary application info. Yes

i nt egr ati ongr aph| Shows the Spring Integration graph. Yes

| oggers Shows and modifies the configuration of loggers in the Yes
application.

i qui base Shows any Liquibase database migrations that have Yes
been applied.

nmetrics Shows ‘metrics’ information for the current application. Yes

mappi ngs Displays a collated list of all @Request Mappi ng Yes

paths.

2.1.0.BUILD-SNAPSHOT

Spring Boot

201

Spring Boot Reference Guide

ID Description Enabled by default
schedul edt asks | Displays the scheduled tasks in your application. Yes
sessi ons Allows retrieval and deletion of user sessions from a Yes

Spring Session-backed session store. Not available
when using Spring Session’s support for reactive web

applications.
shut down Lets the application be gracefully shutdown. No
t hr eaddunp Performs a thread dump. Yes

If your application is a web application (Spring MVC, Spring WebFlux, or Jersey), you can use the
following additional endpoints:

ID Description Enabled by default
heapdunp Returns a GZip compressed hpr of heap dump file. Yes
j ol oki a Exposes JMX beans over HTTP (when Jolokia is on Yes

the classpath, not available for WebFlux).

logfile Returns the contents of the logfile (if | oggi ng.file Yes
or | oggi ng. pat h properties have been set).

Supports the use of the HTTP Range header to

retrieve part of the log file's content.

pr onet heus Exposes metrics in a format that can be scraped by a Yes
Prometheus server.

To learn more about the Actuator’s endpoints and their request and response formats, please refer to
the separate API documentation (HTML or PDF).

52.1 Enabling Endpoints

By default, all endpoints except for shut down are enabled. To configure the enablement of an
endpoint, use its managemnent . endpoi nt . <i d>. enabl ed property. The following example enables
the shut down endpoint:

managenent . endpoi nt . shut down. enabl ed=t rue

If you prefer endpoint enablement to be opt-in rather than opt-out, set the
managemnent . endpoi nt s. enabl ed- by- def aul t property to f al se and use individual endpoint
enabl ed properties to opt back in. The following example enables the i nf 0 endpoint and disables all
other endpoints:

managenent . endpoi nt s. enabl ed- by- def aul t =f al se
managenent . endpoi nt . i nf 0. enabl ed=t r ue

Note

Disabled endpoints are removed entirely from the application context. If you want to change only
the technologies over which an endpoint is exposed, use the i ncl ude and excl ude properties
instead.

2.1.0.BUILD-SNAPSHOT Spring Boot 202

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/actuator-api//html
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/actuator-api//pdf/spring-boot-actuator-web-api.pdf

Spring Boot Reference Guide

52.2 Exposing Endpoints

Since Endpoints may contain sensitive information, careful consideration should be given about when

to expose them. The following table shows the default exposure for the built-in endpoints:

ID JMX Web
audi tevents Yes No
beans Yes No
condi tions Yes No
confi gprops Yes No
env Yes No
fl yway Yes No
heal t h Yes Yes
heapdunp N/A No
httptrace Yes No
info Yes Yes
i nt egrationgraph Yes Yes
j ol oki a N/A No
logfile N/A No
| oggers Yes No
i qui base Yes No
nmetrics Yes No
meppi ngs Yes No
pr onet heus N/A No
schedul edt asks Yes No
sessi ons Yes No
shut down Yes No
t hr eaddunp Yes No

To change which endpoints are exposed, use the following technology-specific i ncl ude and excl ude

properties:

Property

management . endpoi nt s. j nx. exposur e. excl ude
managenent . endpoi nts. j nx. exposur e. i ncl ude

managenent . endpoi nt s. web. exposur e. excl ude

Default

2.1.0.BUILD-SNAPSHOT

Spring Boot

203

Spring Boot Reference Guide

Property Default

management . endpoi nt s. web. exposur e. i ncl ude info, health

The i ncl ude property lists the IDs of the endpoints that are exposed. The excl ude property lists the
IDs of the endpoints that should not be exposed. The excl ude property takes precedence over the
i ncl ude property. Bothi ncl ude and excl ude properties can be configured with a list of endpoint IDs.

For example, to stop exposing all endpoints over JIMX and only expose the heal t h and i nf o endpoints,
use the following property:

‘ managenent . endpoi nt s. j nx. exposur e. i ncl ude=heal th, i nfo

* can be used to select all endpoints. For example, to expose everything over HTTP except the env
and beans endpoints, use the following properties:

managenent . endpoi nt s. web. exposur e. i ncl ude=*
managenent . endpoi nt s. web. exposur e. excl ude=env, beans

Note

* has a special meaning in YAML, so be sure to add quotes if you want to include (or exclude)
all endpoints, as shown in the following example:

menagenent :
endpoi nt s:
web:
exposur e:
include: "*"

Note

If your application is exposed publicly, we strongly recommend that you also secure your
endpoints.

Tip

If you want to implement your own strategy for when endpoints are exposed, you can register an
Endpoi nt Fi | t er bean.

52.3 Securing HTTP Endpoints

You should take care to secure HTTP endpoints in the same way that you would any other sensitive
URL. If Spring Security is present, endpoints are secured by default using Spring Security’s content-
negotiation strategy. If you wish to configure custom security for HTTP endpoints, for example, only allow
users with a certain role to access them, Spring Boot provides some convenient Request Mat cher
objects that can be used in combination with Spring Security.

A typical Spring Security configuration might look something like the following example:

@onfi guration
public class ActuatorSecurity extends WebSecurityConfigurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
ht t p. request Mat cher (Endpoi nt Request . t oAnyEndpoi nt ()) . aut hori zeRequest s()

2.1.0.BUILD-SNAPSHOT Spring Boot 204

Spring Boot Reference Guide

. anyRequest () . hasRol e(" ENDPO NT_ADM N')
.and()
. htt pBasic();
}

The preceding example uses Endpoi nt Request .t oAnyEndpoi nt () to match a request to any
endpoint and then ensures that all have the ENDPO NT_ADM N role. Several other matcher methods
are also available on Endpoi nt Request . See the APl documentation (HTML or PDF) for details.

If you deploy applications behind a firewall, you may prefer that all your actuator
endpoints can be accessed without requiring authentication. You can do so by changing the
managenent . endpoi nt s. web. exposur e. i ncl ude property, as follows:

application.properties.

managenent . endpoi nt s. web. exposur e. i ncl ude=*

Additionally, if Spring Security is present, you would need to add custom security configuration that
allows unauthenticated access to the endpoints as shown in the following example:

@onfiguration
public class ActuatorSecurity extends WebSecurityConfigurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
ht t p. request Mat cher (Endpoi nt Request . t oAnyEndpoi nt ()) . aut hori zeRequest s()
.anyRequest (). perm tA I ();
}

}

52.4 Configuring Endpoints

Endpoints automatically cache responses to read operations that do not take any parameters. To
configure the amount of time for which an endpoint will cache a response, use its cache. ti me-t o-
I i ve property. The following example sets the time-to-live of the beans endpoint’s cache to 10 seconds:

application.properties.

managenent . endpoi nt . beans. cache. ti ne-to-1ive=10s

Note

The prefix managenent . endpoi nt . <name> is used to uniquely identify the endpoint that is
being configured.

Note

When making an authenticated HTTP request, the Pri nci pal is considered as input to the
endpoint and, therefore, the response will not be cached.

52.5 Hypermedia for Actuator Web Endpoints

A “discovery page” is added with links to all the endpoints. The “discovery page” is available on /
act uat or by default.

2.1.0.BUILD-SNAPSHOT Spring Boot 205

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/actuator-api//html
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/actuator-api//pdf/spring-boot-actuator-web-api.pdf

Spring Boot Reference Guide

When a custom management context path is configured, the “discovery page” automatically moves from
[act uat or to the root of the management context. For example, if the management context path is /
managenent , then the discovery page is available from / managenent . When the management context
path is setto / , the discovery page is disabled to prevent the possibility of a clash with other mappings.

52.6 CORS Support

Cross-origin resource sharing (CORS) is a W3C specification that lets you specify in a flexible way what
kind of cross-domain requests are authorized. If you use Spring MVC or Spring WebFlux, Actuator’'s
web endpoints can be configured to support such scenarios.

CORS support is disabled by default and is only enabled once the
managenent . endpoi nts. web. cors. al | owed- ori gi ns property has been set. The following
configuration permits GET and POST calls from the exanpl e. comdomain:

managenent . endpoi nts. web. cors. al | owed- ori gi ns=http://exanpl e. com
managenent . endpoi nt s. web. cor s. al | owed- net hods=GET, POST

Tip

See CorsEndpointProperties for a complete list of options.

52.7 Implementing Custom Endpoints

If you add a @ean annotated with @ndpoi nt, any methods annotated with @ReadOper ati on,
@ViteQperation, or @el et eOper ati on are automatically exposed over JMX and, in a web
application, over HTTP as well. Endpoints can be exposed over HTTP using Jersey, Spring MVC, or
Spring WebFlux.

You can also write technology-specific endpoints by using @nxEndpoi nt or @\¥bEndpoi nt . These
endpoints are restricted to their respective technologies. For example, @\ébEndpoi nt is exposed only
over HTTP and not over JMX.

You can write technology-specific extensions by using @ndpoi nt WebExt ensi on and
@ndpoi nt InkExt ensi on. These annotations let you provide technology-specific operations to
augment an existing endpoint.

Finally, if you need access to web-framework-specific functionality, you can implement Servlet or Spring
@ontrol | er and @Rest Cont r ol | er endpoints at the cost of them not being available over JMX or
when using a different web framework.

Receiving Input

Operations on an endpoint receive input via their parameters. When exposed via the web, the
values for these parameters are taken from the URL’s query parameters and from the JSON request
body. When exposed via JMX, the parameters are mapped to the parameters of the MBean's
operations. Parameters are required by default. They can be made optional by annotating them with
@r g. springfranmewor k. | ang. Nul | abl e.

Each root property in the JSON request body can be mapped to a parameter of the endpoint. Consider
the following JSON request body:

2.1.0.BUILD-SNAPSHOT Spring Boot 206

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://www.w3.org/TR/cors/
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/CorsEndpointProperties.java

Spring Boot Reference Guide

{
"name": "test",
"counter": 42

}

This can be used to invoke a write operation that takes St ri ng name and i nt count er parameters.

Tip

Because endpoints are technology agnostic, only simple types can be specified in the method
signature. In particular declaring a single parameter with a custom type defining a nane and
count er properties is not supported.

Note

To allow the input to be mapped to the operation method’s parameters, Java code implementing
an endpoint should be compiled with - par anet er s, and Kotlin code implementing an endpoint
should be compiled with - j ava- par amet er s. This will happen automatically if you are using
Spring Boot's Gradle plugin or if you are using Maven and spri ng- boot - st art er - parent.

Input type conversion

The parameters passed to endpoint operation methods are, if necessary, automatically converted to the
required type. Before calling an operation method, the input received via JMX or an HTTP request is
converted to the required types using an instance of Appl i cat i onConver si onSer vi ce.

Custom Web Endpoints

Operations on an @ndpoi nt, @\¥bEndpoi nt, or @ndpoi nt WebExt ensi on are automatically
exposed over HTTP using Jersey, Spring MVC, or Spring WebFlux.

Web Endpoint Request Predicates
A request predicate is automatically generated for each operation on a web-exposed endpoint.
Path

The path of the predicate is determined by the ID of the endpoint and the base path of web-exposed
endpoints. The default base path is / act uat or . For example, an endpoint with the ID sessi ons will
use / act uat or/ sessi ons as its path in the predicate.

The path can be further customized by annotating one or more parameters of the operation method with
@5el ect or . Such a parameter is added to the path predicate as a path variable. The variable’s value
is passed into the operation method when the endpoint operation is invoked.

HTTP method

The HTTP method of the predicate is determined by the operation type, as shown in the following table:

Operation HTTP method

@ReadQper ati on GET

2.1.0.BUILD-SNAPSHOT Spring Boot 207

Spring Boot Reference Guide

Operation HTTP method
@ViteQperation POST

@el et eCper ati on DELETE
Consumes

For a @ViteQperation (HTTP POST) that uses the request body, the consumes clause of the
predicate is appl i cati on/ vnd. spri ng-boot. actuator.v2+json, application/json. For
all other operations the consumes clause is empty.

Produces

The produces clause of the predicate can be determined by the produces attribute of the
@el et eOper ati on, @ReadOperation, and @ViteCOperati on annotations. The attribute is
optional. If it is not used, the produces clause is determined automatically.

If the operation method returns voi d or Voi d the produces clause is empty. If the operation method
returns a or g. spri ngf ranewor k. core. i 0. Resour ce, the produces clause is appl i cati on/
oct et -stream For all other operations the produces clause is appli cati on/vnd. spri ng-
boot . act uat or. v2+j son, application/json.

Web Endpoint Response Status

The default response status for an endpoint operation depends on the operation type (read, write, or
delete) and what, if anything, the operation returns.

A @ReadQper at i on returns a value, the response status will be 200 (OK). If it does not return a value,
the response status will be 404 (Not Found).

Ifa@ViteCOperationor@el et eQperati on returns a value, the response status will be 200 (OK).
If it does not return a value the response status will be 204 (No Content).

If an operation is invoked without a required parameter, or with a parameter that cannot be converted
to the required type, the operation method will not be called and the response status will be 400 (Bad
Request).

Web Endpoint Range Requests

An HTTP range request can be used to request part of an HTTP resource. When using Spring
MVC or Spring Web Flux, operations that return a or g. spri ngf ramewor k. core. i 0. Resour ce
automatically support range requests.

Note

Range requests are not supported when using Jersey.

Web Endpoint Security

An operation on a web endpoint or a web-specific endpoint
extension can receive the current j ava. security. Princi pal or
or g. spri ngframewor k. boot . act uat e. endpoi nt. Securi t yCont ext as a method parameter.

2.1.0.BUILD-SNAPSHOT Spring Boot 208

Spring Boot Reference Guide

The former is typically used in conjunction with @Nul | abl e to provide different behaviour for
authenticated and unauthenticated users. The latter is typically used to perform authorization checks
using itsi sUser | nRol e(Stri ng) method.

Servlet endpoints

A Servlet can be exposed as an endpoint by implementing a class annotated with
@er vl et Endpoi nt that also implements Suppl i er <Endpoi nt Ser vl et >. Servlet endpoints
provide deeper integration with the Servlet container but at the expense of portability. They are intended
to be used to expose an existing Ser vl et as an endpoint. For new endpoints, the @ndpoi nt and
@\ebEndpoi nt annotations should be preferred whenever possible.

Controller endpoints

@control | er Endpoi nt and @Rest Control | er Endpoi nt can be used to implement an endpoint
that is only exposed by Spring MVC or Spring WebFlux. Methods are mapped using the standard
annotations for Spring MVC and Spring WebFlux such as @Request Mappi ng and @t Mappi ng, with
the endpoint’s ID being used as a prefix for the path. Controller endpoints provide deeper integration
with Spring’s web frameworks but at the expense of portability. The @ndpoi nt and @\¥bEndpoi nt
annotations should be preferred whenever possible.

52.8 Health Information

You can use health information to check the status of your running application. It is often used by
monitoring software to alert someone when a production system goes down. The information exposed
by the heal t h endpoint depends on the managenent . endpoi nt . heal t h. show det ai | s property
which can be configured with one of the following values:

Name Description
never Details are never shown.
when- aut hori zed Details are only shown to authorized users. Authorized roles can be

configured using managemnent . endpoi nt . heal t h. rol es.

al ways Details are shown to all users.

The default value is never. A user is considered to be authorized when they are in one
or more of the endpoint’s roles. If the endpoint has no configured roles (the default) all
authenticated users are considered to be authorized. The roles can be configured using the
management . endpoi nt . heal t h. r ol es property.

Note

If you have secured your application and wish to use al ways, your security configuration must
permit access to the health endpoint for both authenticated and unauthenticated users.

Health information is collected from the content of a Heal t hl ndi cat or Regi stry (by default all
Heal t hl ndi cat or instances defined in your Appl i cat i onCont ext . Spring Boot includes a number
of auto-configured Heal t hl ndi cat or s and you can also write your own. By default, the final system
state is derived by the Heal t hAggr egat or which sorts the statuses from each Heal t hl ndi cat or
based on an ordered list of statuses. The first status in the sorted list is used as the overall health status.

2.1.0.BUILD-SNAPSHOT Spring Boot 209

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicatorRegistry.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java

Spring Boot Reference Guide

IfnoHeal t hl ndi cat or returns a status that is known to the Heal t hAggr egat or , an UNKNOAN status
is used.

Tip

The Heal t hl ndi cat or Regi stry can be used to register and unregister health indicators at
runtime.

Auto-configured HealthIindicators

The following Heal t hl ndi cat or s are auto-configured by Spring Boot when appropriate:

Name Description

Cassandr aHeal t hl ndi cat or Checks that a Cassandra database is up.

Di skSpaceHeal t hl ndi cat or Checks for low disk space.

Dat aSour ceHeal t hl ndi cat or Checks that a connection to Dat aSour ce can be
obtained.

El asti csearchHeal t hl ndi cat or Checks that an Elasticsearch cluster is up.

I nf | uxDbHeal t hl ndi cat or Checks that an InfluxDB server is up.
JnsHeal t hl ndi cat or Checks that a JMS broker is up.

Mai | Heal t hl ndi cat or Checks that a mail server is up.
MongoHeal t hl ndi cat or Checks that a Mongo database is up.
Neo4j Heal t hl ndi cat or Checks that a Neo4j server is up.
Rabbi t Heal t hl ndi cat or Checks that a Rabbit server is up.
Redi sHeal t hl ndi cat or Checks that a Redis server is up.

Sol r Heal t hl ndi cat or Checks that a Solr server is up.

Tip

You can disable them all by setting the managenent . heal t h. def aul t s. enabl ed property.

Writing Custom HealthIndicators

To provide custom health information, you can register Spring beans that implement the
Heal t hl ndi cat or interface. You need to provide an implementation of the heal t h() method
and return a Heal t h response. The Heal t h response should include a status and can optionally
include additional details to be displayed. The following code shows a sample Heal t hl ndi cat or
implementation:

i nport org.springfranework. boot. act uat e. heal t h. Heal t h;
i nport org.springfranmework. boot . act uat e. heal t h. Heal t hl ndi cat or;
i mport org.springframework. stereotype. Conponent ;

@Conponent
public class MyHeal t hl ndi cator inplenents Heal t hl ndi cator {

2.1.0.BUILD-SNAPSHOT Spring Boot 210

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/cassandra/CassandraHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/system/DiskSpaceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/jdbc/DataSourceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/elasticsearch/ElasticsearchHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/influx/InfluxDbHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/jms/JmsHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mail/MailHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mongo/MongoHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/neo4j/Neo4jHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/amqp/RabbitHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/redis/RedisHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/solr/SolrHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java

Spring Boot Reference Guide

@verride
public Health health() {
int errorCode = check(); // performsonme specific health check

if (errorCode != 0) {
return Heal th.down().w thDetail ("Error Code", errorCode).build();
}
return Heal th.up().build();
}

}

Note

The identifier for a given Heal t hl ndi cator is the name of the bean without the
Heal t hl ndi cat or suffix, if it exists. In the preceding example, the health information is available
in an entry named rry.

In addition to Spring Boot's predefined St at us types, it is also possible for Heal t h to return a
custom St at us that represents a new system state. In such cases, a custom implementation of the
Heal t hAggr egat or interface also needs to be provided, or the default implementation has to be
configured by using the managenent . heal t h. st at us. or der configuration property.

For example, assume a new St at us with code FATAL is being used in one of your Heal t hl ndi cat or
implementations. To configure the severity order, add the following property to your application
properties:

managenent . heal t h. st at us. or der =FATAL, DOWN, OUT_OF_ SERVI CE, UNKNOWN, UP

The HTTP status code in the response reflects the overall health status (for example, UP maps to
200, while OUT_OF_SERVI CE and DOAN map to 503). You might also want to register custom status
mappings if you access the health endpoint over HTTP. For example, the following property maps FATAL
to 503 (service unavailable):

managenent . heal t h. st at us. htt p- mappi ng. FATAL=503

Tip
If you need more control, you can define your own Heal t hSt at usHt t pMapper bean.

The following table shows the default status mappings for the built-in statuses:

Status Mapping

DOWN SERVICE_UNAVAILABLE (503)
OUT_OF_SERVICE SERVICE_UNAVAILABLE (503)

UP No mapping by default, so http status is 200

UNKNOWN No mapping by default, so http status is 200

Reactive Health Indicators

For reactive applications, such as those using Spring WebFlux, React i veHeal t hl ndi cat or provides
a non-blocking contract for getting application health. Similar to a traditional Heal t hl ndi cat or,
health information is collected from the content of a _Reacti veHeal t hl ndi cat or Regi stry

2.1.0.BUILD-SNAPSHOT Spring Boot 211

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/Status.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthAggregator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthIndicatorRegistry.java

Spring Boot Reference Guide

(by default all Heal t hl ndi cat or and _Reacti veHeal t hl ndi cat or instances defined in your
Appl i cati onCont ext . Regular Heal t hl ndi cat or that do not check against a reactive API are
executed on the elastic scheduler.

Tip

In a reactive application, The React i veHeal t hl ndi cat or Regi stry can be used to register
and unregister health indicators at runtime.

To provide custom health information from a reactive API, you can register Spring beans
that implement the Reacti veHeal t hl ndi cat or interface. The following code shows a sample
React i veHeal t hl ndi cat or implementation:

@onponent
public class MyReactiveHeal thlndicator inplenments ReactiveHeal thlndicator {

@verride
publ i c Mono<Heal t h> heal th() {
return doHeal t hCheck() //perform some specific health check that returns a Mno<Heal t h>
. onError Resune(ex -> Mono.just(new Heal th. Builder().down(ex).build())));

}
}

Tip

To handle the error automatically, consider extending from
Abstract Reacti veHeal t hl ndi cat or.

Auto-configured ReactiveHealthIindicators

The following React i veHeal t hl ndi cat or s are auto-configured by Spring Boot when appropriate:

Name Description

Cassandr aReact i Chideks thdt adCasdandra database is up.

MongoReact i veHe@hebksithat @t lMongo database is up.

Redi sReact i veHe@hebks that @t Redis server is up.

Tip
If necessary, reactive indicators replace the regular ones. Also, any Heal t hl ndi cat or that is

not handled explicitly is wrapped automatically.

52.9 Application Information

Application information exposes various information collected from all | nf oContri but or beans
defined in your ApplicationContext. Spring Boot includes a number of auto-configured
I nf oCont ri but or beans, and you can write your own.

Auto-configured InfoContributors

The following | nf oCont ri but or beans are auto-configured by Spring Boot, when appropriate:

2.1.0.BUILD-SNAPSHOT Spring Boot 212

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/cassandra/CassandraReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mongo/MongoReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/redis/RedisReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java

Spring Boot Reference Guide

Name Description

Envi r onnent | nf oEgposedanykey from the Envi r onment under the i nf o key.

G t I nf oContri buEaposes git information if a gi t . pr operti es file is available.

Bui | dI nf oCont r i Exposes build information if a META- | NF/ bui | d-i nf o. properti es file is
available.

Tip

It is possible to disable them all by setting the managenent. i nfo. defaul ts. enabl ed
property.

Custom Application Information

You can customize the data exposed by the i nf o endpoint by setting i nf 0. * Spring properties. All
Envi ronnent properties under the i nf o key are automatically exposed. For example, you could add
the following settings to your appl i cati on. properti es file:

i nfo. app. encodi ng=UTF- 8
i nf 0. app. j ava. source=1. 8
i nfo.app.java.target=1.8

Tip

Rather than hardcoding those values, you could also expand info properties at build time.

Assuming you use Maven, you could rewrite the preceding example as follows:

i nfo. app. encodi ng=@r oj ect . bui | d. sour ceEncodi ng@
i nfo. app. j ava. sour ce=@ ava. ver si on@
i nfo. app. java. target =@ ava. ver si on@

Git Commit Information

Another useful feature of the i nf o endpoint is its ability to publish information about the state of your
gi t source code repository when the project was built. If a G t Properti es bean is available, the
git.branch,git.commt.id,andgit.conmt.time properties are exposed.

Tip

A G tProperti es bean is auto-configured ifa gi t . properti es file is available at the root of
the classpath. See "Generate git information" for more details.

If you want to display the full git information (that is, the full content of gi t. properti es), use the
managenent . i nf 0. gi t. node property, as follows:

managenent . i nfo. gi t. mode=ful |
Build Information

If a Bui | dProperti es bean is available, the i nf o endpoint can also publish information about your
build. This happens if a META- | NF/ bui | d-i nf o. properti es file is available in the classpath.

2.1.0.BUILD-SNAPSHOT Spring Boot 213

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/EnvironmentInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/GitInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/BuildInfoContributor.java

Spring Boot Reference Guide

Tip

The Maven and Gradle plugins can both generate that file. See "Generate build information™ for
more details.

Writing Custom InfoContributors

To provide custom application information, you can register Spring beans that implement the
I nf oCont ri but or interface.

The following example contributes an exanpl e entry with a single value:

i nport java.util.Collections;

i nport org.springfranmework. boot. actuate. info.|nfo;
i mport org.springframework. boot. actuate.info.|nfoContributor;
i mport org.springframework. stereotype. Conponent ;

@Conponent
public class Exanpl el nfoContributor inplenents |InfoContributor {

@verride
public void contribute(lnfo.Builder builder) {
bui |l der.w thDetai |l ("exanpl e",
Col | ecti ons. si ngl et onMap("key", "value"));

If you reach the i nf o endpoint, you should see a response that contains the following additional entry:

{
"exanpl e": {
"key" : "val ue"
}
}

2.1.0.BUILD-SNAPSHOT Spring Boot 214

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java

Spring Boot Reference Guide

53. Monitoring and Management over HTTP

If you are developing a web application, Spring Boot Actuator auto-configures all enabled endpoints
to be exposed over HTTP. The default convention is to use the i d of the endpoint with a prefix of /
act uat or as the URL path. For example, heal t h is exposed as / act uat or/ heal t h. TIP: Actuator
is supported natively with Spring MVC, Spring WebFlux, and Jersey.

53.1 Customizing the Management Endpoint Paths

Sometimes, it is useful to customize the prefix for the management endpoints. For example,
your application might already use /actuator for another purpose. You can use the
management . endpoi nt s. web. base- pat h property to change the prefix for your management
endpoint, as shown in the following example:

managenent . endpoi nts. web. base- pat h=/ nanage

The preceding appl i cati on. properti es example changes the endpoint from / act uat or/ {i d}
to / manage/ {i d} (for example, / manage/ i nf 0).

Note

Unless the management port has been configured to expose endpoints by using a different HTTP
port, managenent . endpoi nt s. web. base- pat h is relative to server . servl et . cont ext -
pat h. If managenent . server. port is configured, managemnent . endpoi nt s. web. base-
pat h is relative to managenent . server. servl et. cont ext - pat h.

If you want to map endpoints to a different path, you can use the
managenent . endpoi nt s. web. pat h- mappi ng property.

The following example remaps / act uat or/ heal t h to/ heal t hcheck:

application.properties.

managenent . endpoi nt s. web. base- pat h=/
managenent . endpoi nt s. web. pat h- mappi ng. heal t h=heal t hcheck

53.2 Customizing the Management Server Port

Exposing management endpoints by using the default HTTP port is a sensible choice for cloud-based
deployments. If, however, your application runs inside your own data center, you may prefer to expose
endpoints by using a different HTTP port.

You can set the managenent . server. port property to change the HTTP port, as shown in the
following example:

‘ managenent . server. port =8081

53.3 Configuring Management-specific SSL

When configured to use a custom port, the management server can also be configured with its own
SSL by using the various managenent . server. ssl . * properties. For example, doing so lets a
management server be available over HTTP while the main application uses HTTPS, as shown in the
following property settings:

2.1.0.BUILD-SNAPSHOT Spring Boot 215

Spring Boot Reference Guide

server. port=8443

server. ssl . enabl ed=true

server. ssl. key-store=cl asspat h: store. j ks
server. ssl . key- passwor d=secr et
managenent . server . port =8080
managenent . server. ssl . enabl ed=f al se

Alternatively, both the main server and the management server can use SSL but with different key
stores, as follows:

server. port =8443

server. ssl . enabl ed=true

server. ssl . key-store=cl asspat h: mai n. j ks

server. ssl . key- passwor d=secr et
managenent . server. port =8080
managenent . server. ssl . enabl ed=true

managenent . server. ssl . key- st or e=cl asspat h: nanagenent . j ks
managenent . server. ssl . key- passwor d=secr et

53.4 Customizing the Management Server Address

You can customize the address that the management endpoints are available on by setting the
managenent . server. addr ess property. Doing so can be useful if you want to listen only on an
internal or ops-facing network or to listen only for connections from | ocal host .

Note
You can listen on a different address only when the port differs from the main server port.

The following example appl i cati on. properti es does not allow remote management connections:

managenent . server. port=8081
managenent . server. addr ess=127.0.0. 1

53.5 Disabling HTTP Endpoints

If you do not want to expose endpoints over HTTP, you can set the management port to - 1, as shown
in the following example:

‘nanagenent.server.port=—1

This can be achieved using the managenent . endpoi nt s. web. exposur e. excl ude property as
well, as shown in following example:

‘nanagenent.endpoints.meb.exposure.exclude:*

2.1.0.BUILD-SNAPSHOT Spring Boot 216

Spring Boot Reference Guide

54. Monitoring and Management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default, Spring Boot exposes management endpoints as JMX MBeans under the
org. spri ngfranmewor k. boot domain.

54.1 Customizing MBean Names

The name of the MBean is usually generated from the i d of the endpoint. For example, the heal t h
endpoint is exposed as or g. spri ngf r amewor k. boot : t ype=Endpoi nt, nane=Heal t h.

If your application contains more than one Spring Appl i cati onCont ext, you may find that names
clash. To solve this problem, you can set the spri ng. j nx. uni que- nanes property to t r ue so that
MBean names are always unique.

You can also customize the JIMX domain under which endpoints are exposed. The following settings
show an example of doing so in appl i cati on. properties:

Spring.j nx. uni que- nanes=t r ue
managenent . endpoi nts. j nx. domai n=com exanpl e. myapp

54.2 Disabling JMX Endpoints

If you do not want to expose endpoints over JMX, you can set the
managenent . endpoi nts. j nx. exposur e. excl ude property to *, as shown in the following
example:

‘ managenent . endpoi nt s. j nx. exposur e. excl ude=*

54.3 Using Jolokia for JIMX over HTTP

Jolokia is a JMX-HTTP bridge that provides an alternative method of accessing JMX beans. To use
Jolokia, include a dependency to or g. j ol oki a: j ol oki a- cor e. For example, with Maven, you would
add the following dependency:

<dependency>
<groupl d>org. j ol oki a</ groupl d>
<artifactld>jol okia-core</artifactld>

</ dependency>

The Jolokia endpoint can then be exposed by adding jolokia or * to the
managenent . endpoi nt s. web. exposur e. i ncl ude property. You can then access it by using /
act uat or/j ol oki a on your management HTTP server.

Customizing Jolokia
Jolokia has a number of settings that you would traditionally configure by setting servlet parameters.

With Spring Boot, you can use your appl i cati on. properti es file. To do so, prefix the parameter
with managenent . endpoi nt . j ol oki a. confi g., as shown in the following example:

managenent . endpoi nt . j ol oki a. confi g. debug=t r ue

2.1.0.BUILD-SNAPSHOT Spring Boot 217

Spring Boot Reference Guide

Disabling Jolokia

If you wuse Jolokia but do not want Spring Boot to configure it, set the
managemnent . endpoi nt . j ol oki a. enabl ed property to f al se, as follows:

managenent . endpoi nt . j ol oki a. enabl ed=f al se

2.1.0.BUILD-SNAPSHOT Spring Boot 218

Spring Boot Reference Guide

55. Loggers

Spring Boot Actuator includes the ability to view and configure the log levels of your application at
runtime. You can view either the entire list or an individual logger’s configuration, which is made up of
both the explicitly configured logging level as well as the effective logging level given to it by the logging
framework. These levels can be one of:

* TRACE
» DEBUG
* | NFO
* VWARN
* ERROR
* FATAL
. OFF

e nul |

nul | indicates that there is no explicit configuration.

55.1 Configure a Logger

To configure a given logger, POST a partial entity to the resource’s URI, as shown in the following
example:

{
"configuredLevel ": "DEBUG'

}
Tip

To “reset” the specific level of the logger (and use the default configuration instead), you can pass
avalue of nul | as the confi gur edLevel .

2.1.0.BUILD-SNAPSHOT Spring Boot 219

Spring Boot Reference Guide

56. Metrics

Spring Boot Actuator provides dependency management and auto-configuration for Micrometer, an
application metrics facade that supports numerous monitoring systems, including:

* Atlas

+ Datadog
» Dynatrace
e Elastic

+ Ganglia

» Graphite

e Influx

s JMX

* New Relic
» Prometheus

» SignalFx

e Simple (in-memory)

e StatsD
* Wavefront
Tip

To learn more about Micrometer’s capabilities, please refer to its reference documentation, in
particular the concepts section.

56.1 Getting started

Spring Boot auto-configures a composite Met er Regi stry and adds a registry to the composite
for each of the supported implementations that it finds on the classpath. Having a dependency on
m croneter-regi stry-{systent inyour runtime classpath is enough for Spring Boot to configure
the registry.

Most registries share common features. For instance, you can disable a particular registry even if the
Micrometer registry implementation is on the classpath. For instance, to disable Datadog:

‘ managenent . netri cs. export. dat adog. enabl ed=f al se

Spring Boot will also add any auto-configured registries to the global static composite registry on the
Met ri cs class unless you explicitly tell it not to:

‘ managenent . netri cs. use- gl obal -regi stry=f al se

You can register any number of Met er Regi st ryCust om zer beans to further configure the registry,
such as applying common tags, before any meters are registered with the registry:

2.1.0.BUILD-SNAPSHOT Spring Boot 220

https://micrometer.io
https://micrometer.io/docs
https://micrometer.io/docs/concepts

Spring Boot Reference Guide

@Bean
Met er Regi st ryCust omi zer <Met er Regi stry> netri csConmmonTags() {
return registry -> registry.config().comonTags("region", "us-east-1");

}

You can apply customizations to particular registry implementations by being more specific about the
generic type:

@Bean

Met er Regi st ryCust onmi zer <G aphi t eMet er Regi stry> graphiteMetri csNam ngConvention() {
return registry -> registry.config().nam ngConventi on(MY_CUSTOM CONVENTI ON) ;

}

With that setup in place you can inject Met er Regi st ry in your components and register metrics:

@onponent
public class Sanpl eBean {

private final Counter counter;

publ i ¢ Sanpl eBean(Met er Regi stry registry) {
this.counter = registry.counter("received. mnessages");

}

public void handl eMessage(String nessage) {
this.counter.increnment();
/1 handl e nessage i npl enentation

}

Spring Boot also configures built-in instrumentation (i.e. Met er Bi nder implementations) that you can
control via configuration or dedicated annotation markers.

56.2 Supported monitoring systems

Atlas

By default, metrics are exported to Atlas running on your local machine. The location of the Atlas server
to use can be provided using:

menagenent. netrics. export.atlas.uri=http://atlas. exanpl e.com 7101/ api /v1/ publish

Datadog

Datadog registry pushes metrics to datadoghq periodically. To export metrics to Datadog, your API key
must be provided:

‘ managenent . netri cs. export. dat adog. api - key=YOUR_KEY

You can also change the interval at which metrics are sent to Datadog:

‘ managenent . netri cs. export. dat adog. st ep=30s

Dynatrace

Dynatrace registry pushes metrics to the configured URI periodically. To export metrics to Dynatrace,
your API token, device ID, and URI must be provided:

2.1.0.BUILD-SNAPSHOT Spring Boot 221

http://micrometer.io/docs/registry/atlas
https://github.com/Netflix/atlas
https://www.datadoghq.com
http://micrometer.io/docs/registry/datadog
http://micrometer.io/docs/registry/dynatrace

Spring Boot Reference Guide

managenent . netri cs. export. dynatrace. api -t oken=YOUR_TOKEN
managenent . netri cs. export. dynatrace. devi ce-i d=YOUR_DEVI CE_| D
managenent . netri cs. export. dynatrace. uri =YOUR_URI

You can also change the interval at which metrics are sent to Dynatrace:

managenent . netri cs. export. dynatrace. st ep=30s

Elastic

By default, metrics are exported to Elastic running on your local machine. The location of the Elastic
server to use can be provided using the following property:

managenent . netrics. export. el astic. hosts=http://el astic. exanpl e. com 8086

Ganglia

By default, metrics are exported to Ganglia running on your local machine. The Ganglia server host and
port to use can be provided using:

managenent . netri cs. export. gangl i a. host =gangl i a. exanpl e. com
managenent . netri cs. export. gangli a. port=9649

Graphite

By default, metrics are exported to Graphite running on your local machine. The Graphite server host
and port to use can be provided using:

menagenent .. netri cs. export. graphite. host =graphi te. exanpl e. com
managenent . netri cs. export. graphite. port=9004

Micrometer provides a default Hi er ar chi cal NanmeMapper that governs how a dimensional meter id
is mapped to flat hierarchical names.

Tip
To take control over this behaviour, define your G- aphi t eMet er Regi st ry and supply your

own Hi er ar chi cal NameMapper . An auto-configured Gr aphi t eConf i g and Cl ock beans are
provided unless you define your own:

@Bean
public G aphiteMeterRegistry graphiteMeterRegistry(GaphiteConfig config, Cock clock) {
return new GraphiteMeterRegistry(config, clock, MY_H ERARCH CAL_MAPPER);

}

Influx

By default, metrics are exported to Influx running on your local machine. The location of the Influx server
to use can be provided using:

managenent . netrics. export.influx.uri=http://influx.exanpl e.com 8086

JMX

Micrometer provides a hierarchical mapping to JMX, primarily as a cheap and portable way to view
metrics locally. By default, metrics are exported to the met ri cs JMX domain. The domain to use can
be provided using:

2.1.0.BUILD-SNAPSHOT Spring Boot 222

http://micrometer.io/docs/registry/elastic
http://micrometer.io/docs/registry/ganglia
http://ganglia.sourceforge.net
http://micrometer.io/docs/registry/graphite
https://graphiteapp.org
http://micrometer.io/docs/registry/graphite#_hierarchical_name_mapping
http://micrometer.io/docs/registry/influx
https://www.influxdata.com
http://micrometer.io/docs/registry/jmx

Spring Boot Reference Guide

menagenent . netri cs. export.j nx. domai n=com exanpl e. app. netrics

Micrometer provides a default Hi er ar chi cal NameMapper that governs how a dimensional meter id
is mapped to flat hierarchical names.

Tip

To take control over this behaviour, define your JnmxMet er Regi stry and supply your own
Hi er ar chi cal NamreMapper . An auto-configured JnxConf i g and Cl ock beans are provided
unless you define your own:

@Bean
public JnxMeterRegi stry jnxMeterRegi stry(JnkConfig config, dock clock) {
return new JmxMet er Regi stry(config, clock, MY_H ERARCH CAL_MNAPPER);

}

New Relic

New Relic registry pushes metrics to New Relic periodically. To export metrics to New Relic, your API
key and account id must be provided:

managenent . netri cs. export.newr el ic. api - key=YOUR_KEY
managenent .. netri cs. export.newr el ic.account-i d=YOUR_ACCOUNT_I D

You can also change the interval at which metrics are sent to New Relic:

‘ managenent . netri cs. export.new el ic. st ep=30s

Prometheus

Prometheus expects to scrape or poll individual app instances for metrics. Spring Boot provides an
actuator endpoint available at / act uat or/ pr onet heus to present a Prometheus scrape with the
appropriate format.

Tip

The endpoint is not available by default and must be exposed, see exposing endpoints for more
details.

Here is an example scr ape_confi g to add to pr onet heus. ym :

scrape_configs:
- job_nane: 'spring'
nmetrics_path: '/actuator/pronetheus'
static_configs:
- targets: ['HOST: PORT']

SignalFx

SignalFx registry pushes metrics to SignalFx periodically. To export metrics to SignalFx, your access
token must be provided:

managenent . netri cs. export. si gnal f x. access-t oken=YOUR_ACCESS_TOKEN

You can also change the interval at which metrics are sent to SignalFx:

2.1.0.BUILD-SNAPSHOT Spring Boot 223

http://micrometer.io/docs/registry/jmx#_hierarchical_name_mapping
http://micrometer.io/docs/registry/new-relic
https://newrelic.com
http://micrometer.io/docs/registry/prometheus
https://prometheus.io
http://micrometer.io/docs/registry/signalfx
https://signalfx.com

Spring Boot Reference Guide

managenent . netri cs. export. si gnal f x. st ep=30s

Simple

Micrometer ships with a simple, in-memory backend that is automatically used as a fallback if no other
registry is configured. This allows you to see what metrics are collected in the metrics endpoint.

The in-memory backend disables itself as soon as you're using any of the other available backend. You
can also disable it explicitly:

managenent . netri cs. export. si npl e. enabl ed=f al se

StatsD

The StatsD registry pushes metrics over UDP to a StatsD agent eagerly. By default, metrics are exported
to a StatsD agent running on your local machine. The StatsD agent host and port to use can be provided
using:

menagenent. netri cs. export. statsd. host =st at sd. exanpl e. com
managenent . netri cs. export. statsd. port=9125

You can also change the StatsD line protocol to use (default to Datadog):

‘ managenent . netri cs. export. st atsd. fl avor =et sy

Wavefront

Wavefront registry pushes metrics to Wavefront periodically. If you are exporting metrics to Wavefront
directly, your API token must be provided:

‘ managenent . netri cs. export. wavefront. api -t oken=YOUR_API _TOKEN

Alternatively, you may use a Wavefront sidecar or an internal proxy set up in your environment that
forwards metrics data to the Wavefront API host:

‘ managenent . netri cs. export.wavefront. uri =proxy://|ocal host: 2878

Tip

If publishing metrics to a Wavefront proxy (as described in the documentation), the host must be
in the proxy: // HOST: PORT format.

You can also change the interval at which metrics are sent to Wavefront:

‘ managenent . netri cs. export. wavefront. st ep=30s

56.3 Supported Metrics

Spring Boot registers the following core metrics when applicable:
* JVM metrics, report utilization of:
¢ Various memory and buffer pools

« Statistics related to garbage collection

2.1.0.BUILD-SNAPSHOT Spring Boot 224

http://micrometer.io/docs/registry/statsd
http://micrometer.io/docs/registry/wavefront
https://www.wavefront.com/
https://docs.wavefront.com/proxies_installing.html

Spring Boot Reference Guide

e Threads utilization

* Number of classes loaded/unloaded

CPU metrics

File descriptor metrics

Kafka consumer metrics

Log4j2 metrics: record the number of events logged to Log4j2 at each level
Logback metrics: record the number of events logged to Logback at each level

Uptime metrics: report a gauge for uptime and a fixed gauge representing the application’s absolute
start time

Tomcat metrics

Spring Integration metrics

Spring MVC Metrics

Auto-configuration enables the instrumentation of requests handled by Spring MVC. When
management . met ri cs. web. server. aut o-ti me-requests is t r ue, this instrumentation occurs
for all requests. Alternatively, when set to f al se, you can enable instrumentation by adding @i ned
to a request-handling method:

@Rest Control | er
@inmed O
public class MyController {

@zet Mappi ng("/ api / peopl e")

@i med(extraTags = { "region", "us-east-1" }) O
@i med(value = "all.people", longTask = true) O
public List<Person> listPeople() { ... }

A controller class to enable timings on every request handler in the controller.

A method to enable for an individual endpoint. This is not necessary if you have it on the class, but
can be used to further customize the timer for this particular endpoint.

A method with | ongTask = true to enable a long task timer for the method. Long task timers
require a separate metric name, and can be stacked with a short task timer.

By default, metrics are generated with the name, http. server.requests. The name can
be customized by setting the managenent. nmetrics.web. server.requests-netric-nane

property.

By default, Spring MVC-related metrics are tagged with the following information:

Tag Description

exception Simple class name of any exception that was

thrown while handling the request.

2.1.0.BUILD-SNAPSHOT Spring Boot 225

https://docs.spring.io/spring-integration/docs/current/reference/html/system-management-chapter.html#micrometer-integration

Spring Boot Reference Guide

Tag Description
met hod Request’s method (for example, GET or POST)
out come Request’s outcome based on the status code

of the response. 1xx is | NFORMATI ONAL,
2xx is SUCCESS, 3xx is REDI RECTI ON, 4xx
CLI ENT_ERROR, and 5xx is SERVER _ERROR

st at us Response’s HTTP status code (for example, 200
or 500)
uri Request’s URI template prior to variable

substitution, if possible (for example, / api /
person/{id})

To customize the tags, provide a @ean that implements WebM/cTagsPr ovi der .
Spring WebFlux Metrics

Auto-configuration enables the instrumentation of all requests handled by WebFlux controllers and
functional handlers.

By default, metrics are generated with the name htt p. server. requests. You can customize the
name by setting the managenent . netri cs. web. server. request s- netri c- nanme property.

By default, WebFlux-related metrics are tagged with the following information:

Tag Description

exception Simple class name of any exception that was
thrown while handling the request.

met hod Request’s method (for example, GET or POST)

out cone Request’s outcome based on the status code
of the response. 1xx is | NFORMATI ONAL,
2xx is SUCCESS, 3xx is REDI RECTI ON, 4xx
CLI ENT_ERROR, and 5xx is SERVER_ERROR

st at us Response’s HTTP status code (for example, 200
or 500)
uri Request’s URI template prior to variable

substitution, if possible (for example, / api /
person/{id})

To customize the tags, provide a @ean that implements WebFl uxTagsPr ovi der .
HTTP Client Metrics

Spring Boot Actuator manages the instrumentation of both Rest Tenpl at e and Webd i ent . For that,
you have to get injected with an auto-configured builder and use it to create instances:

* Rest Tenpl at eBui | der for Rest Tenpl at e

2.1.0.BUILD-SNAPSHOT Spring Boot 226

Spring Boot Reference Guide

e Webd i ent . Bui | der for Webd i ent

It is also possible to apply manually the customizers responsible for this instrumentation, namely
Met ri csRest Tenpl at eCust omi zer and Metri csWebd i ent Cust omi zer.

By default, metrics are generated with the name, http.client.requests. The name can
be customized by setting the nanagenent. netrics.web.client.requests-netric-nane

property.
By default, metrics generated by an instrumented client are tagged with the following information:
« net hod, the request’'s method (for example, GET or POST).

e uri,therequest’s URI template prior to variable substitution, if possible (for example, / api / per son/

{id}).
» st at us, the response’s HTTP status code (for example, 200 or 500).
» cl i ent Nane, the host portion of the URI.

To customize the tags, and depending on your choice of client, you can provide a @ean that implements
Rest Tenpl at eExchangeTagsProvi der or Webd i ent ExchangeTagsProvi der. There are
convenience static functions in Rest Tenpl at eExchangeTags and Webd i ent ExchangeTags.

Cache Metrics

Auto-configuration enables the instrumentation of all available Caches on startup with metrics prefixed
with cache. Cache instrumentation is standardized for a basic set of metrics. Additional, cache-specific
metrics are also available.

The following cache libraries are supported:

» Caffeine

* EhCache 2

* Hazelcast

e Any compliant JCache (JSR-107) implementation

Metrics are tagged by the name of the cache and by the name of the CacheManager that is derived
from the bean name.

Note

Only caches that are available on startup are bound to the registry. For caches created
on-the-fly or programmatically after the startup phase, an explicit registration is required. A
CacheMet ri csRegi strar bean is made available to make that process easier.

DataSource Metrics

Auto-configuration enables the instrumentation of all available Dat aSour ce objects with a metric
named j dbc. Data source instrumentation results in gauges representing the currently active, maximum
allowed, and minimum allowed connections in the pool. Each of these gauges has a name that is prefixed
by j dbc.

2.1.0.BUILD-SNAPSHOT Spring Boot 227

Spring Boot Reference Guide

Metrics are also tagged by the name of the Dat aSour ce computed based on the bean name.

Tip

By default, Spring Boot provides metadata for all supported data sources; you can add additional
Dat aSour cePool Met adat aPr ovi der beans if your favorite data source isn’t supported out of
the box. See Dat aSour cePool Met adat aPr ovi der sConfi gur at i on for examples.

Also, Hikari-specific metrics are exposed with a hi kar i cp prefix. Each metric is tagged by the name
of the Pool (can be controlled with spri ng. dat asour ce. nane).

Hibernate Metrics

Auto-configuration enables the instrumentation of all available Hibernate Ent i t yManager Fact ory
instances that have statistics enabled with a metric named hi ber nat e.

Metrics are also tagged by the name of the Enti t yManager Fact ory that is derived from the bean
name.

To enable statistics, the standard JPA property hi ber nat e. generate_stati sti cs must be set to
t r ue. You can enable that on the auto-configured Ent i t yManager Fact or y as shown in the following
example:

spring.jpa.properties. hibernate.generate_statistics=true

RabbitMQ Metrics

Auto-configuration will enable the instrumentation of all available RabbitMQ connection factories with
a metric named r abbi t ng.

56.4 Registering custom metrics

To register custom metrics, inject Met er Regi st ry into your component, as shown in the following
example:

class Dictionary {
private final List<String> words = new CopyOnWiteArrayList<>();
Dictionary(MeterRegistry registry) {

regi stry. gaugeCol | ectionSi ze("dictionary.size", Tags.enpty(), this.words);

}

...

}

If you find that you repeatedly instrument a suite of metrics across components or applications, you may
encapsulate this suite in a Met er Bi nder implementation. By default, metrics from all Met er Bi nder
beans will be automatically bound to the Spring-managed Met er Regi stry.

56.5 Customizing individual metrics

If you need to apply customizations to specific Meter instances you can use
the io.mcronmeter.core.instrunment.config.MeterFilter interface. By default, all
Met er Fi | t er beans will be automatically applied to the micrometer Met er Regi stry. Confi g.

2.1.0.BUILD-SNAPSHOT Spring Boot 228

Spring Boot Reference Guide

For example, if you want to rename the nyt ag. r egi on tag to myt ag. ar ea for all meter IDs beginning
with com exanpl e, you can do the following:

@Bean
public MeterFilter renaneRegi onTagheterFilter() {
return MeterFilter.renameTag("com exanpl e", "nytag.region", "nytag.area");

}

Common tags

Common tags are generally used for dimensional drill-down on the operating environment like host,
instance, region, stack, etc. Commons tags are applied to all meters and can be configured as shown
in the following example:

managenent . netri cs. t ags. r egi on=us- east-1
managenent . netri cs. t ags. st ack=prod

The example above adds r egi on and st ack tags to all meters with a value of us- east - 1 and pr od
respectively.

Note

The order of common tags is important if you are using Graphite. As the order of common
tags cannot be guaranteed using this approach, Graphite users are advised to define a custom
Met er Fi | t er instead.

Per-meter properties

In addition to Met er Fi | t er beans, it's also possible to apply a limited set of customization on a per-
meter basis using properties. Per-meter customizations apply to any all meter IDs that start with the given
name. For example, the following will disable any meters that have an ID starting with exanpl e. r enot e

managenent . netri cs. enabl e. exanpl e. renot e=f al se
The following properties allow per-meter customization:

Table 56.1. Per-meter customizations

Property Description
managenent . netri cs. enabl e Whether to deny meters from emitting any
metrics.

managenent .. met ri cs. di stri buti on. per cenvihet®r to publish a histogram suitable for
hi st ogram computing aggregable (across dimension)
percentile approximations.

managenent . met ri cs. di stri buti on. per cerRublist percentile values computed in your
application

managemnent . netrics. distribution.sla Publishacumulative histogram with buckets
defined by your SLAs.

For more details on concepts behind per centi | es- hi st ogr am percenti | es and sl a refer to the
"Histograms and percentiles" section of the micrometer documentation.

2.1.0.BUILD-SNAPSHOT Spring Boot 229

https://micrometer.io/docs/concepts#_histograms_and_percentiles

Spring Boot Reference Guide

56.6 Metrics endpoint

Spring Boot provides a netri cs endpoint that can be used diagnostically to examine the metrics
collected by an application. The endpoint is not available by default and must be exposed, see exposing
endpoints for more details.

Navigatingto/ act uat or / met ri cs displays a list of available meter names. You can drill down to view
information about a particular meter by providing its name as a selector, e.g. / act uat or/ nmetri cs/
j vm menory. max.

Tip

The name you use here should match the name used in the code, not the name after it has
been naming-convention normalized for a monitoring system it is shipped to. In other words,
if j vm nmenory. max appears as j vm nmenory_nmax in Prometheus because of its snake case
naming convention, you should still use j vm nmenory. max as the selector when inspecting the
meter in the met ri cs endpoint.

You can also add any number of tag=KEY: VALUE query parameters to the end of the
URL to dimensionally drill down on a meter, e.g. /actuator/nmetrics/jvm nenory. max?
t ag=ar ea: nonheap.

Tip

The reported measurements are the sum of the statistics of all meters matching the meter
name and any tags that have been applied. So in the example above, the returned "Value"
statistic is the sum of the maximum memory footprints of "Code Cache", "Compressed Class
Space", and "Metaspace" areas of the heap. If you just wanted to see the maximum size for
the "Metaspace", you could add an additional t ag=i d: Met aspace,i.e./ actuator/nmetrics/
j vm menory. nax?t ag=ar ea: nonheap&t ag=i d: Met aspace.

2.1.0.BUILD-SNAPSHOT Spring Boot 230

Spring Boot Reference Guide

57. Auditing

Once Spring Security is in play, Spring Boot Actuator has a flexible audit framework that publishes
events (by default, “authentication success”, “failure” and “access denied” exceptions). This feature
can be very useful for reporting and for implementing a lock-out policy based on authentication
failures. To customize published security events, you can provide your own implementations of
Abst ract Aut henti cati onAudi t Li st ener and Abst r act Aut hori zat i onAudi t Li st ener.

You can also use the audit services for your own business events. To do so, either inject the
existing Audi t Event Reposi tory into your own components and use that directly or publish
an Audi t Appl i cati onEvent with the Spring Appl i cati onEvent Publ i sher (by implementing
Appl i cati onEvent Publ i sher Awar e).

2.1.0.BUILD-SNAPSHOT Spring Boot 231

Spring Boot Reference Guide

58. HTTP Tracing

Tracing is automatically enabled for all HTTP requests. You can view the htt ptrace endpoint and
obtain basic information about the last 100 request-response exchanges.

58.1 Custom HTTP tracing

To customize the items that are included in each trace, use the managenent . trace. htt p. i ncl ude
configuration property. For advanced customization, consider registering your own
Ht t pExchangeTr acer implementation.

By default, an | nMenoryHtt pTraceReposi tory that stores traces for the last 100 request-
response exchanges is used. If you need to expand the capacity, you can define your own
instance of the | nMenoryHt t pTr aceReposi t ory bean. You can also create your own alternative
Ht t pTraceReposi t or y implementation.

2.1.0.BUILD-SNAPSHOT Spring Boot 232

Spring Boot Reference Guide

59. Process Monitoring

In the spri ng- boot module, you can find two classes to create files that are often useful for process
monitoring:

* ApplicationPidFil eWiter creates a file containing the application PID (by default, in the
application directory with a file name of appl i cat i on. pi d).

 WebServerPortFil eWiter creates a file (or files) containing the ports of the running web server
(by default, in the application directory with a file name of appl i cati on. port).

By default, these writers are not activated, but you can enable:

» By Extending Configuration

» Section 59.2, “Programmatically”

59.1 Extending Configuration

In the META- | NF/ spri ng. fact ori es file, you can activate the listener(s) that writes a PID file, as
shown in the following example:

org. springfranmewor k. cont ext . Appl i cati onLi st ener =\
or g. spri ngf ramewor k. boot . cont ext. Appl i cationPidFileWiter,\
or g. spri ngf ramewor k. boot . web. cont ext. WebServer PortFil eWiter

59.2 Programmatically

You can also activate a listener by invoking the Spri ngAppl i cati on. addLi st ener s(..) method
and passing the appropriate Wi t er object. This method also lets you customize the file name and
path in the Wi t er constructor.

2.1.0.BUILD-SNAPSHOT Spring Boot 233

Spring Boot Reference Guide

60. Cloud Foundry Support

Spring Boot's actuator module includes additional support that is activated when you deploy to a
compatible Cloud Foundry instance. The / cl oudf oundr yappl i cat i on path provides an alternative
secured route to all @ndpoi nt beans.

The extended support lets Cloud Foundry management Uls (such as the web application that you can
use to view deployed applications) be augmented with Spring Boot actuator information. For example,
an application status page may include full health information instead of the typical “running” or “stopped”
status.

Note

The / cl oudf oundr yappl i cat i on path is not directly accessible to regular users. In order to
use the endpoint, a valid UAA token must be passed with the request.

60.1 Disabling Extended Cloud Foundry Actuator Support

If you want to fully disable the / cl oudf oundr yappl i cat i on endpoints, you can add the following
setting to your appl i cati on. properti es file:

application.properties.

‘ managenent . cl oudf oundry. enabl ed=f al se

60.2 Cloud Foundry Self-signed Certificates

By default, the security verification for / cl oudf oundr yappl i cat i on endpoints makes SSL calls to
various Cloud Foundry services. If your Cloud Foundry UAA or Cloud Controller services use self-signed
certificates, you need to set the following property:

application.properties.

‘ managenent . cl oudf oundry. ski p- ssl -val i dati on=t rue

60.3 Custom context path

If the server’s context-path has been configured to anything other than / , the Cloud Foundry endpoints
will not be available at the root of the application. For example, if ser ver . servl et . cont ext - pat h=/
app, Cloud Foundry endpoints will be available at / app/ cl oudf oundr yappl i cati on/ *.

If you expect the Cloud Foundry endpoints to always be available at/ cl oudf oundr yappl i cati on/
* regardless of the server’s context-path, you will need to explicitly configure that in your application.
The configuration will differ depending on the web server in use. For Tomcat, the following configuration
can be added:

@Bean
publ i c Tontat Servl et WebSer ver Factory servl et WebSer ver Factory() {
return new Tonctat Ser vl et WebSer ver Factory() {

@verride
protected void prepareContext(Host host,
ServletContextlnitializer[] initializers) {

super. prepar eCont ext (host, initializers);

2.1.0.BUILD-SNAPSHOT Spring Boot 234

Spring Boot Reference Guide

St andar dCont ext child = new Standar dCont ext ();

chi | d. addLi f ecycl eLi st ener (new Tontat . Fi xCont ext Li stener());

chil d. set Pat h("/cl oudf oundryappl i cation");

ServletContainerlnitializer initializer = getServletContextlnitializer(
get Cont ext Path());

chil d. addServl et Contai nerlnitializer(initializer, Collections.enptySet());

child.setCrossContext(true);

host . addChi | d(chi | d);

private ServletContainerlnitializer getServletContextlnitializer(String contextPath) {
return (c, context) -> {
Servl et servlet = new GenericServlet() {

@verride
public void service(Servl et Request req, ServletResponse res)
throws Servl et Exception, | CException {
Servl et Cont ext context = req. get Servl et Cont ext ()
. get Cont ext (cont ext Pat h) ;
cont ext . get Request Di spat cher ("/ cl oudf oundryapplication").forward(req,
res);

IE

cont ext . addSer vl et ("cl oudf oundry", servlet).addMappi ng("/*");
}s
}

2.1.0.BUILD-SNAPSHOT Spring Boot 235

Spring Boot Reference Guide

61. What to Read Next

If you want to explore some of the concepts discussed in this chapter, you can take a look at the actuator
sample applications. You also might want to read about graphing tools such as Graphite.

Otherwise, you can continue on, to read about ‘deployment options’ or jump ahead for some in-depth
information about Spring Boot's build tool plugins.

2.1.0.BUILD-SNAPSHOT Spring Boot 236

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples
http://graphite.wikidot.com/

Part VI. Deploying
Spring Boot Applications

Spring Boot’s flexible packaging options provide a great deal of choice when it comes to deploying your
application. You can deploy Spring Boot applications to a variety of cloud platforms, to container images
(such as Docker), or to virtual/real machines.

This section covers some of the more common deployment scenarios.

Spring Boot Reference Guide

62. Deploying to the Cloud

Spring Boot’'s executable jars are ready-made for most popular cloud PaaS (Platform-as-a-Service)
providers. These providers tend to require that you “bring your own container”. They manage application
processes (not Java applications specifically), so they need an intermediary layer that adapts your
application to the cloud’s notion of a running process.

Two popular cloud providers, Heroku and Cloud Foundry, employ a “buildpack” approach. The buildpack
wraps your deployed code in whatever is needed to start your application. It might be a JDK and a
call to j ava, an embedded web server, or a full-fledged application server. A buildpack is pluggable,
but ideally you should be able to get by with as few customizations to it as possible. This reduces the
footprint of functionality that is not under your control. It minimizes divergence between development
and production environments.

Ideally, your application, like a Spring Boot executable jar, has everything that it needs to run packaged
within it.

In this section, we look at what it takes to get the simple application that we developed in the “Getting
Started” section up and running in the Cloud.

62.1 Cloud Foundry

Cloud Foundry provides default buildpacks that come into play if no other buildpack is specified. The
Cloud Foundry Java buildpack has excellent support for Spring applications, including Spring Boot. You
can deploy stand-alone executable jar applications as well as traditional . war packaged applications.

Once you have built your application (by using, for example, nvn cl ean package) and have installed
the cf _command line tool, deploy your application by using the cf push command, substituting the
path to your compiled . j ar . Be sure to have logged in with your cf command line client before pushing
an application. The following line shows using the cf push command to deploy an application:

$ cf push acl oudyspringtine -p target/denp-0.0.1- SNAPSHOT. j ar

Note

In the preceding example, we substitute acl oudyspri ngti me for whatever value you give cf
as the name of your application.

See the cf push documentation for more options. If there is a Cloud Foundry mani f est . yni file
present in the same directory, it is considered.

At this point, cf starts uploading your application, producing output similar to the following example:

Upl oadi ng acl oudyspringtine... OK
Preparing to start acloudyspringtine... OK
————— > Downl oaded app package (8.9M
————— > Java Bui |l dpack Version: v3.12 (offline) | https://github.conl cloudfoundry/java-
bui | dpack. gi t #6f 25b7e
----- > Downl oadi ng Open Jdk JRE 1.8.0_121 from https://java-buil dpack. cl oudf oundry. or g/ openj dk/ trusty/
x86_64/ openj dk-1.8.0_121.tar.gz (found in cache)
Expandi ng Open Jdk JRE to .java-buil dpack/open_jdk_jre (1.6s)
————— > Downl oadi ng Open JDK Li ke Menory Cal cul ator 2.0.2_RELEASE from https://java-
bui | dpack. cl oudf oundry. or g/ menory-cal cul at or/trusty/x86_64/ menory-cal cul ator-2.0.2_RELEASE. tar.gz (found
in cache)
Menory Settings: -Xss349K - Xmk681574K - XX: MaxMet aspaceSi ze=104857K - Xms681574K -
XX: Met aspaceSi ze=104857K

2.1.0.BUILD-SNAPSHOT Spring Boot 238

https://github.com/cloudfoundry/java-buildpack
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/getting-started.html#login
https://docs.cloudfoundry.org/cf-cli/getting-started.html#push
https://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

Spring Boot Reference Guide

————— > Downl oadi ng Container Certificate Trust Store 1.0.0_RELEASE from https://java-
bui | dpack. cl oudf oundry. org/ contai ner-certificate-trust-store/container-certificate-trust-
store-1.0.0_RELEASE. jar (found in cache)
Adding certificates to .java-buil dpack/container_certificate_trust_store/truststore.jks (0.6s)

————— > Downl oadi ng Spring Auto Reconfiguration 1.10.0_RELEASE from https://java-
bui | dpack. cl oudf oundry. or g/ aut o-reconfi gurati on/ auto-reconfigurati on-1.10. 0_RELEASE.jar (found in cache)
Checki ng status of app 'acloudyspringtine' ...

0 of 1 instances running (1 starting)

0 of 1 instances running (1 starting)
0 of 1 instances running (1 starting)
1 of 1 instances running (1 running)

App started

Congratulations! The application is now live!

Once your application is live, you can verify the status of the deployed application by using the cf apps
command, as shown in the following example:

$ cf apps

Getting applications in ...

(0.

name requested state i nstances nenory di sk urls

acl oudyspringtine started 1/1 512M 1G acl oudyspringtine. cfapps.io

Once Cloud Foundry acknowledges that your application has been deployed, you should be able
to find the application at the URI given. In the preceding example, you could find it at http://
acl oudyspringti ne. cfapps.io/.

Binding to Services

By default, metadata about the running application as well as service connection information is exposed
to the application as environment variables (for example: $VCAP_SERVI CES). This architecture decision
is due to Cloud Foundry’s polyglot (any language and platform can be supported as a buildpack) nature.
Process-scoped environment variables are language agnostic.

Environment variables do not always make for the easiest API, so Spring Boot automatically extracts
them and flattens the data into properties that can be accessed through Spring’'s Envi r onnent
abstraction, as shown in the following example:

@onponent
cl ass MyBean i npl ements Environnment Anare {

private String instanceld;
@verride
public void setEnvironment (Environment environnent) {

this.instanceld = environnent. getProperty("vcap. application.instance_id");

}

Il

All Cloud Foundry properties are prefixed with vcap. You can use vcap properties to access application
information (such as the public URL of the application) and service information (such as database
credentials). See the ‘CloudFoundryVcapEnvironmentPostProcessor’ Javadoc for complete details.

2.1.0.BUILD-SNAPSHOT Spring Boot 239

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/cloud/CloudFoundryVcapEnvironmentPostProcessor.html

Spring Boot Reference Guide

Tip

The Spring Cloud Connectors project is a better fit for tasks such as configuring a DataSource.
Spring Boot includes auto-configuration support and a spring-boot-starter-cl oud-
connect or s starter.

62.2 Heroku

Heroku is another popular PaaS platform. To customize Heroku builds, you provide a Procfil e,
which provides the incantation required to deploy an application. Heroku assigns a port for the Java
application to use and then ensures that routing to the external URI works.

You must configure your application to listen on the correct port. The following example shows the
Procfi | e for our starter REST application:

web: java -Dserver.port=$PORT -jar target/denp-0.0.1- SNAPSHOT. j ar

Spring Boot makes - D arguments available as properties accessible from a Spring Envi r onnent
instance. The server. port configuration property is fed to the embedded Tomcat, Jetty, or Undertow
instance, which then uses the port when it starts up. The $PORT environment variable is assigned to
us by the Heroku PaaS.

This should be everything you need. The most common deployment workflow for Heroku deployments
istogit push the code to production, as shown in the following example:

$ git push heroku master

Initializing repository, done.

Counting objects: 95, done.

Del ta conpression using up to 8 threads.

Conpr essi ng obj ects: 100% (78/78), done.

Witing objects: 100% (95/95), 8.66 MB | 606.00 KiB/s, done.
Total 95 (delta 31), reused O (delta 0)

----- > Java app detected

----- > Installing OpenJDK 1.8... done

----- > Installing Maven 3.3.1... done

----- > Installing settings.xm ... done

----- > Executing: m/n -B -DskipTests=true clean install

[INFOQ Scanning for projects...
Downl oadi ng: https://repo.spring.iol...
Downl oaded: https://repo.spring.io/... (818 B at 1.8 KB/ sec)

Downl oaded: http://s3pository. heroku.conljvni... (152 KB at 595.3 KB/ sec)
[INFQ Installing /tnp/build_0c35a5d2-a067-4abc-a232-14b1f b7a8229/target/. ..
[INFO Installing /tnp/build_0c35a5d2-a067-4abc-a232-14b1f b7a8229/ pom xm ...

L RO I e LT T LT T
[INFO BU LD SUCCESS

I RO e
[INFO Total time: 59.358s

[INFO Finished at: Fri Mar 07 07:28:25 UTC 2014

[INFO Final Menory: 20M 493M

L RO I e LT T LT T

----- > Di scovering process types
Procfile declares types -> web

————— > Conpressing... done, 70.4MB
————— > Launching... done, v6
http://agil e-sierra-1405. her okuapp. com depl oyed to Heroku

To git @eroku.com agil e-sierra-1405.git

2.1.0.BUILD-SNAPSHOT Spring Boot 240

https://cloud.spring.io/spring-cloud-connectors/

Spring Boot Reference Guide

* [new branch] master -> master

Your application should now be up and running on Heroku.

62.3 OpenShift

OpenShift is the Red Hat public (and enterprise) extension of the Kubernetes container orchestration
platform. Similarly to Kubernetes, OpenShift has many options for installing Spring Boot based
applications.

OpenShift has many resources describing how to deploy Spring Boot applications, including:

Using the S2I builder

Architecture guide

* Running as a traditional web application on Wildfly

OpenShift Commons Briefing

62.4 Amazon Web Services (AWS)

Amazon Web Services offers multiple ways to install Spring Boot-based applications, either as traditional
web applications (war) or as executable jar files with an embedded web server. The options include:

AWS Elastic Beanstalk

AWS Code Deploy

AWS OPS Works

AWS Cloud Formation

AWS Container Registry

Each has different features and pricing models. In this document, we describe only the simplest option:
AWS Elastic Beanstalk.

AWS Elastic Beanstalk

As described in the official Elastic Beanstalk Java guide, there are two main options to deploy a Java
application. You can either use the “Tomcat Platform” or the “Java SE platform”.

Using the Tomcat Platform

This option applies to Spring Boot projects that produce a war file. No special configuration is required.
You need only follow the official guide.

Using the Java SE Platform

This option applies to Spring Boot projects that produce a jar file and run an embedded web container.
Elastic Beanstalk environments run an nginx instance on port 80 to proxy the actual application, running
on port 5000. To configure it, add the following line to your appl i cati on. properti es file:

2.1.0.BUILD-SNAPSHOT Spring Boot 241

https://www.openshift.com/
https://blog.openshift.com/using-openshift-enterprise-grade-spring-boot-deployments/
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html-single/spring_boot_microservices_on_red_hat_openshift_container_platform_3/
https://blog.openshift.com/using-spring-boot-on-openshift/
https://blog.openshift.com/openshift-commons-briefing-96-cloud-native-applications-spring-rhoar/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Java.html

Spring Boot Reference Guide

server. port=5000

Upload binaries instead of sources

By default, Elastic Beanstalk uploads sources and compiles them in AWS. However, it is
best to upload the binaries instead. To do so, add lines similar to the following to your
. el asti cbeanstal k/ config.ym file:

depl oy:
artifact: target/denp-0.0.1- SNAPSHOT. j ar

Reduce costs by setting the environment type

By default an Elastic Beanstalk environment is load balanced. The load balancer has a significant
cost. To avoid that cost, set the environment type to “Single instance”, as described in the Amazon
documentation. You can also create single instance environments by using the CLI and the
following command:

eb create -s

Summary

This is one of the easiest ways to get to AWS, but there are more things to cover, such as how to
integrate Elastic Beanstalk into any Cl / CD tool, use the Elastic Beanstalk Maven plugin instead of the
CLI, and others. There is a blog post covering these topics more in detalil.

62.5 Boxfuse and Amazon Web Services

Boxfuse works by turning your Spring Boot executable jar or war into a minimal VM image that can be
deployed unchanged either on VirtualBox or on AWS. Boxfuse comes with deep integration for Spring
Boot and uses the information from your Spring Boot configuration file to automatically configure ports
and health check URLs. Boxfuse leverages this information both for the images it produces as well as
for all the resources it provisions (instances, security groups, elastic load balancers, and so on).

Once you have created a Boxfuse account, connected it to your AWS account, installed the latest version
of the Boxfuse Client, and ensured that the application has been built by Maven or Gradle (by using, for
example, mvn cl ean package), you can deploy your Spring Boot application to AWS with a command
similar to the following:

$ boxfuse run nyapp-1.0.jar -env=prod

See the boxf use r un documentation for more options. If there is a boxf use. conf file presentin the
current directory, it is considered.

Tip

By default, Boxfuse activates a Spring profile named boxf use on startup. If your executable jar
or war contains an appl i cati on- boxf use. properti es file, Boxfuse bases its configuration
on the properties it contains.

At this point, boxf use creates an image for your application, uploads it, and configures and starts the
necessary resources on AWS, resulting in output similar to the following example:

2.1.0.BUILD-SNAPSHOT Spring Boot 242

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-create-wizard.html#environments-create-wizard-capacity
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-create-wizard.html#environments-create-wizard-capacity
https://exampledriven.wordpress.com/2017/01/09/spring-boot-aws-elastic-beanstalk-example/
https://boxfuse.com/
https://console.boxfuse.com
https://boxfuse.com/docs/commandline/run.html
https://boxfuse.com/docs/commandline/#configuration
https://boxfuse.com/docs/payloads/springboot.html#configuration

Spring Boot Reference Guide

Fusing I mage for nyapp-1.0.jar ...

I mage fused in 00:06.838s (53937 K) -> axel fontaine/nyapp: 1.0

Creating axel fontaine/ nyapp ...

Pushi ng axel font ai ne/ nyapp: 1.0 ...

Veri fying axel fontai ne/ nyapp: 1.0 ...

Creating Elastic IP ...

Mappi ng nmyapp- axel f ont ai ne. boxfuse.io to 52.28.233.167 ...

Waiting for AWs to create an AM for axel fontaine/nyapp:1.0 in eu-central-1 (this nay take up to 50
seconds) ...

AM created in 00:23.557s -> am -d23f 38cf

Creating security group boxfuse-sg_axel fontaine/ nyapp:1.0 ...

Launching t2. mcro instance of axel fontaine/nyapp:1.0 (am -d23f38cf) in eu-central-1 ...

I nstance | aunched in 00: 30.306s -> i-92ef9f53

Waiting for ANS to boot Instance i-92ef9f53 and Payload to start at http://52.28.235.61/

Payl oad started in 00:29.266s -> http://52.28.235.61/

Remappi ng El astic | P 52.28.233.167 to i-92ef9f53 ...

Waiting 15s for AWS to conplete Elastic IP Zero Downtinme transition ...

Depl oynent conpl et ed successful ly. axel fontaine/nyapp:1.0 is up and running at http://nyapp-

axel f ont ai ne. boxf use. i o/

Your application should now be up and running on AWS.

See the blog post on deploying Spring Boot apps on EC2 as well as the documentation for the Boxfuse
Spring Boot integration to get started with a Maven build to run the app.

62.6 Google Cloud

Google Cloud has several options that can be used to launch Spring Boot applications. The easiest to
get started with is probably App Engine, but you could also find ways to run Spring Boot in a container
with Container Engine or on a virtual machine with Compute Engine.

To run in App Engine, you can create a project in the Ul first, which sets up a unique identifier for you
and also sets up HTTP routes. Add a Java app to the project and leave it empty and then use the Google
Cloud SDK to push your Spring Boot app into that slot from the command line or CI build.

App Engine Standard requires you to use WAR packaging. Follow these steps to deploy App Engine
Standard application to Google Cloud.

Alternatively, App Engine Flex requires you to create an app. yani file to describe the resources your
app requires. Normally, you put this file in sr ¢/ mai n/ appengi ne, and it should resemble the following
file:

service: default

runtinme: java
env: flex

runtime_config:
j dk: openj dk8

handl ers:
-ourl: /¥
script: this field is required, but ignored

manual _scal i ng:
i nstances: 1

heal t h_check:
enabl e_heal t h_check: Fal se

env_vari abl es:
ENCRYPT_KEY: your _encryption_key_here

2.1.0.BUILD-SNAPSHOT Spring Boot 243

https://boxfuse.com/blog/spring-boot-ec2.html
https://boxfuse.com/docs/payloads/springboot.html
https://boxfuse.com/docs/payloads/springboot.html
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://github.com/GoogleCloudPlatform/getting-started-java/blob/master/appengine-standard-java8/springboot-appengine-standard/README.md

Spring Boot Reference Guide

You can deploy the app (for example, with a Maven plugin) by adding the project ID to the build
configuration, as shown in the following example:

<pl ugi n>
<groupl d>com googl e. cl oud. t ool s</ gr oupl d>
<artifact| d>appengi ne- maven- pl ugi n</artifactld>
<versi on>1. 3. 0</ ver si on>
<configuration>
<proj ect >nyproj ect </ proj ect >
</ configuration>
</ pl ugi n>

Then deploy with nvn appengi ne: depl oy (if you need to authenticate first, the build fails).

2.1.0.BUILD-SNAPSHOT Spring Boot 244

Spring Boot Reference Guide

63. Installing Spring Boot Applications

In addition to running Spring Boot applications by using j ava -j ar, it is also possible to make
fully executable applications for Unix systems. A fully executable jar can be executed like any other
executable binary or it can be registered with i ni t. d or syst end. This makes it very easy to install
and manage Spring Boot applications in common production environments.

Caution

Fully executable jars work by embedding an extra script at the front of the file. Currently, some tools
do not accept this format, so you may not always be able to use this technique. For example, j ar
- xf may silently fail to extract a jar or war that has been made fully executable. It is recommended
that you make your jar or war fully executable only if you intend to execute it directly, rather than
running it with j ava -j ar or deploying it to a servlet container.

To create a ‘fully executable’ jar with Maven, use the following plugin configuration:

<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactld>

<configuration>
<execut abl e>t rue</ execut abl e>
</ confi guration>
</ pl ugi n>

The following example shows the equivalent Gradle configuration:

boot Jar {
I aunchScri pt ()
}

You can then run your application by typing . / my- appl i cati on.jar (where my-applicationis
the name of your artifact). The directory containing the jar is used as your application’s working directory.

63.1 Supported Operating Systems

The default script supports most Linux distributions and is tested on CentOS and Ubuntu. Other
platforms, such as OS X and FreeBSD, require the use of a custom enbeddedLaunchScri pt .

63.2 Unix/Linux Services

Spring Boot application can be easily started as Unix/Linux services by using either init.d or
syst end.

Installation as ani ni t. d Service (System V)

If you configured Spring Boot's Maven or Gradle plugin to generate a fully executable jar, and you do not
use a custom enbeddedLaunchScri pt, your application can be used as ani ni t. d service. To do
so, symlinkthejartoi ni t . d to support the standard st art, st op,rest art,and st at us commands.

The script supports the following features:
 Starts the services as the user that owns the jar file

» Tracks the application’s PID by using / var / r un/ <appname>/ <appnane>. pi d

2.1.0.BUILD-SNAPSHOT Spring Boot 245

Spring Boot Reference Guide

» Writes console logs to / var / | og/ <appnanme>. | og

Assuming that you have a Spring Boot application installed in / var / myapp, to install a Spring Boot
application as an i ni t . d service, create a symlink, as follows:

‘$ sudo I n -s /var/nyapp/ nyapp.jar /etc/init.d/ nyapp

Once installed, you can start and stop the service in the usual way. For example, on a Debian-based
system, you could start it with the following command:

‘SB service nyapp start
Tip
If your application fails to start, check the log file writtento / var / | og/ <appnane>. | og for errors.

You can also flag the application to start automatically by using your standard operating system tools.
For example, on Debian, you could use the following command:

$ update-rc.d nyapp defaults <priority>

Securing aninit.d Service

Note

The following is a set of guidelines on how to secure a Spring Boot application that runs as an
init.d service. It is not intended to be an exhaustive list of everything that should be done to harden
an application and the environment in which it runs.

When executed as root, as is the case when root is being used to start an init.d service, the default
executable script runs the application as the user who owns the jar file. You should never run a Spring
Boot application as r oot , so your application’s jar file should never be owned by root. Instead, create
a specific user to run your application and use chown to make it the owner of the jar file, as shown in
the following example:

$ chown boot app: boot app your-app.j ar

In this case, the default executable script runs the application as the boot app user.

Tip

To reduce the chances of the application’s user account being compromised, you should consider
preventing it from using a login shell. For example, you can set the account’s shell to / usr/
sbi n/ nol ogi n.

You should also take steps to prevent the modification of your application’s jar file. Firstly, configure
its permissions so that it cannot be written and can only be read or executed by its owner, as shown
in the following example:

$ chnod 500 your-app. j ar

Second, you should also take steps to limit the damage if your application or the account that's running
it is compromised. If an attacker does gain access, they could make the jar file writable and change its

2.1.0.BUILD-SNAPSHOT Spring Boot 246

Spring Boot Reference Guide

contents. One way to protect against this is to make it immutable by using chat t r, as shown in the
following example:

$ sudo chattr +i your-app.jar

This will prevent any user, including root, from modifying the jar.

If root is used to control the application’s service and you use a . conf file to customize its startup,
the . conf file is read and evaluated by the root user. It should be secured accordingly. Use chnod
so that the file can only be read by the owner and use chown to make root the owner, as shown in
the following example:

$ chnod 400 your - app. conf
$ sudo chown root:root your-app. conf

Installation as a syst end Service

syst end is the successor of the System V init system and is now being used by many modern Linux
distributions. Although you can continue to use i ni t. d scripts with syst end, it is also possible to
launch Spring Boot applications by using syst end ‘service’ scripts.

Assuming that you have a Spring Boot application installed in / var / myapp, to install a Spring Boot
application as a syst end service, create a script named myapp. servi ce and place it in / etc/
syst end/ syst emdirectory. The following script offers an example:

[Unit]
Descri pti on=nyapp
Af ter =sysl og. t ar get

[Servi ce]

User =nyapp

ExecSt art =/ var / myapp/ nyapp. j ar
SuccessExi t St at us=143

[Install]
Want edBy=nul ti - user. t ar get

Important

Remember to change the Descri pti on, User, and ExecSt art fields for your application.

Note

The ExecSt art field does not declare the script action command, which means that the r un
command is used by default.

Note that, unlike when running as an i ni t. d service, the user that runs the application, the PID file,
and the console log file are managed by syst end itself and therefore must be configured by using
appropriate fields in the ‘service’ script. Consult the service unit configuration man page for more details.

To flag the application to start automatically on system boot, use the following command:

$ systenct!| enabl e nyapp.service

Refer to man systenct!| for more details.

2.1.0.BUILD-SNAPSHOT Spring Boot 247

http://www.freedesktop.org/software/systemd/man/systemd.service.html

Spring Boot Reference Guide

Customizing the Startup Script

The default embedded startup script written by the Maven or Gradle plugin can be customized
in a number of ways. For most people, using the default script along with a few customizations
is usually enough. If you find you cannot customize something that you need to, use the
enbeddedLaunchScri pt option to write your own file entirely.

Customizing the Start Script when It Is Written

It often makes sense to customize elements of the start script as it is written into the jar file. For example,
init.d scripts can provide a “description”. Since you know the description up front (and it need not
change), you may as well provide it when the jar is generated.

To customize written elements, use the enbeddedLaunchScri pt Properti es option of the Spring

Boot Maven or Gradle plugins.

The following property substitutions are supported with the default script:

Name Description Gradle default Maven default

node The script mode. aut o aut o

i ni t1 nf oreoRi deisdes section of ${t ask. baseNane} ${project.artifactld}
“INIT INFO”

i ni t1nfdRapuirettMBtaartt section $renote_fs $sysl og $remote_fs $sysl og
of “INIT INFO”. $net wor k $net wor k

i ni t1nfdRepuirettBtayp section of $renvte_fs $sysl og $renote_fs $sysl og
“INIT INFO". $net wor k $net wor k

i nitlnfdedfaultt-SBteartt sectionof 2 3 4 5 2345
“INIT INFO”.

i nitlnfdedfaudltt-SBtayp sectionof 0 1 6 016
“INIT INFO”.

i nitl nf Shoortt-Meessooriigdtii com Single-line version of ${ proj ect. nane}

section of “INIT INFO”".

ni t | nf dResariigdtii@msection of

${ proj ect . descri pti on}
(falling back to
${t ask. baseNane})

${proj ect.description} ${project.description}

“INIT INFO". (falling back to (falling back to
${t ask. baseNane}) ${ proj ect. nane})
i nitlnf atilamtfiiggsection of “INIT 2345 99 01 2345 99 01
INFO”
conf Fol devre default value for Folder containing the jar Folder containing the jar

CONF_FOLDER

i nl i ned®@efeBmdepb a file script
that should be inlined in
the default launch script.

2.1.0.BUILD-SNAPSHOT

Spring Boot

248

Spring Boot Reference Guide

Name Description

This can be used to set
environmental variables
such as JAVA OPTS before
any external config files are
loaded

| ogFol ddpefault value for
LOG_FOLDER. Only valid for
aninit.d service

Gradle default

Maven default

| ogFi | eraefault value for
LOG_FI LENAME. Only valid
foraninit. d service

pi dFol ddpefault value for
Pl D_FOLDER. Only valid for
aninit.d service

pi dFi | er2afault value for the
name of the PID file in
Pl D_FOLDER. Only valid for
aninit.d service

useSt ar t\Bhefileadinmet ar t - st op-

true

daenmon command, when it's

available, should be used to
control the process

st opWai tOéfamlt value for
STOP_WAI T_TI MEin
seconds. Only valid for an
i nit.d service

60

true

60

Customizing a Script When It Runs

For items of the script that need to be customized after the jar has been written, you can use environment

variables or a config file.

The following environment properties are supported with the default script:

Variable Description

MODE The “mode” of operation. The default depends on the way the jar was built but

is usually aut o (meaning it tries to guess if it is an init script by checking if it is a
symlink in a directory called i ni t . d). You can explicitly set it to ser vi ce so that the
stop| start|status|restart commands work or to r un if you want to run the

script in the foreground.

USE _START_SMoetHakEMONL ar t - st op- daenon command, when it's available, should be used to

Pl D_FOLDER The root name of the pid folder (/ var / r un by default).

control the process. Defaults to t r ue.

2.1.0.BUILD-SNAPSHOT

Spring Boot

249

Spring Boot Reference Guide

Variable Description
LOG_FOLDER The name of the folder in which to put log files (/ var / | og by default).

CONF_FOLDERThe name of the folder from which to read .conf files (same folder as jar-file by
default).

LOG_FI LENANEhe name of the log file in the LOG_FOLDER (<appnane>. | og by default).

APP_NAME | The name of the app. If the jar is run from a symlink, the script guesses the app
name. If it is not a symlink or you want to explicitly set the app name, this can be
useful.

RUN_ARGS | The arguments to pass to the program (the Spring Boot app).

JAVA HOME | The location of the j ava executable is discovered by using the PATH by default, but
you can set it explicitly if there is an executable file at $JAVA_HOVE/ bi n/ j ava.

JAVA _OPTS | Options that are passed to the JVM when it is launched.

JARFI LE The explicit location of the jar file, in case the script is being used to launch a jar that
it is not actually embedded.

DEBUG If not empty, sets the - x flag on the shell process, making it easy to see the logic in
the script.

STOP_WAI T_[TThEtime in seconds to wait when stopping the application before forcing a shutdown
(60 by default).

Note

The Pl D_FOLDER, LOG_FOLDER, and LOG_FI LENAME variables are only valid foraninit.d
service. For syst end, the equivalent customizations are made by using the ‘service’ script. See
the service unit configuration man page for more details.

With the exception of JARFI LE and APP_NANME, the settings listed in the preceding section can be
configured by using a . conf file. The file is expected to be next to the jar file and have the same name
but suffixed with . conf rather than . j ar. For example, a jar named / var / nyapp/ nyapp. j ar uses
the configuration file named / var / myapp/ nyapp. conf , as shown in the following example:

myapp.conf.

JAVA_OPTS=- Xnx1024M
LOG_FOLDER=/ cust onl | og/ f ol der

Tip

If you do not like having the config file next to the jar file, you can set a CONF_ FOLDER environment
variable to customize the location of the config file.

To learn about securing this file appropriately, see the guidelines for securing an init.d service.

63.3 Microsoft Windows Services

A Spring Boot application can be started as a Windows service by using wi nsw.

2.1.0.BUILD-SNAPSHOT Spring Boot 250

http://www.freedesktop.org/software/systemd/man/systemd.service.html
https://github.com/kohsuke/winsw

Spring Boot Reference Guide

A (separately maintained sample) describes step-by-step how you can create a Windows service for
your Spring Boot application.

2.1.0.BUILD-SNAPSHOT Spring Boot 251

https://github.com/snicoll-scratches/spring-boot-daemon

Spring Boot Reference Guide

64. What to Read Next

Check out the Cloud Foundry, Heroku, OpenShift, and Boxfuse web sites for more information about
the kinds of features that a PaaS can offer. These are just four of the most popular Java PaaS providers.
Since Spring Boot is so amenable to cloud-based deployment, you can freely consider other providers
as well.

The next section goes on to cover the Spring Boot CLI, or you can jump ahead to read about build
tool plugins.

2.1.0.BUILD-SNAPSHOT Spring Boot 252

https://www.cloudfoundry.org/
https://www.heroku.com/
https://www.openshift.com
https://boxfuse.com

Part VII. Spring Boot CLI

The Spring Boot CLI is a command line tool that you can use if you want to quickly develop a Spring
application. It lets you run Groovy scripts, which means that you have a familiar Java-like syntax without
so much boilerplate code. You can also bootstrap a new project or write your own command for it.

Spring Boot Reference Guide

65. Installing the CLI

The Spring Boot CLI (Command-Line Interface) can be installed manually by using SDKMAN! (the SDK
Manager) or by using Homebrew or MacPorts if you are an OSX user. See Section 10.2, “Installing the
Spring Boot CLI" in the “Getting started” section for comprehensive installation instructions.

2.1.0.BUILD-SNAPSHOT Spring Boot 254

Spring Boot Reference Guide

66. Using the CLI

Once you have installed the CLI, you can run it by typing spri ng and pressing Enter at the command
line. If you run spri ng without any arguments, a simple help screen is displayed, as follows:

$ spring
usage: spring [--help] [--version]
<conmand> [<ar gs>]

Avai | abl e commands are:

run [options] <files> [--] [args]
Run a spring groovy script

nore command hel p is shown here

You can type spri ng hel p to get more details about any of the supported commands, as shown in
the following example:

$ spring help run
spring run - Run a spring groovy script

usage:
--aut oconfi gure [Bool ean]

--cl asspat h,
-e, --edit

-cp

--no- guess- dependenci es
--no- guess-inports

-g, --quiet
-v, --verbose
--wat ch

spring run [options] <files> [--]

[args]

Description

Add aut oconfigure conpiler
transformations (default:

Addi tional classpath entries

QOpen the file with the default system
editor

Do not attenpt to guess dependencies

Do not attenpt to guess inports

Qui et | oggi ng

Ver bose | oggi ng of dependency
resol ution

Watch the specified file for changes

true)

The ver si on command provides a quick way to check which version of Spring Boot you are using,

as follows:

$ spring version

Spring CLI v2.1.0.BU LD SNAPSHOT

66.1 Running Applications with the CLI

You can compile and run Groovy source code by using the r un command. The Spring Boot CLI is
completely self-contained, so you do not need any external Groovy installation.

The following example shows a “hello world” web application written in Groovy:

hello.groovy.

@Rest Control | er
cl ass WebApplication {

@Request Mappi ng("/")
String home() {
"Hello World!"

}

2.1.0.BUILD-SNAPSHOT

Spring Boot 255

Spring Boot Reference Guide

To compile and run the application, type the following command:

‘SB spring run hello.groovy

To pass command-line arguments to the application, use - - to separate the commands from the “spring”
command arguments, as shown in the following example:

‘$ spring run hello.groovy -- --server.port=9000

To set JVM command line arguments, you can use the JAVA OPTS environment variable, as shown
in the following example:

‘ $ JAVA_OPTS=- Xnx1024m spring run hel |l o. groovy

Note

When setting JAVA_OPTS on Microsoft Windows, make sure to quote the entire instruction, such
as set "JAVA OPTS=- Xns256m - Xnmx2048n1. Doing so ensures the values are properly
passed to the process.

Deduced “grab” Dependencies

Standard Groovy includes a @x ab annotation, which lets you declare dependencies on third-party
libraries. This useful technique lets Groovy download jars in the same way as Maven or Gradle would
but without requiring you to use a build tool.

Spring Boot extends this technique further and tries to deduce which libraries to “grab” based on your
code. For example, since the WebAppl i cati on code shown previously uses @Rest Control | er
annotations, Spring Boot grabs "Tomcat" and "Spring MVC".

The following items are used as “grab hints”:

Items Grabs

JdbcTenpl at e, JDBC Application.
NamedPar anet er JdbcTenpl at e,

Dat aSour ce

@knabl eJns JMS Application.
@knabl eCachi ng Caching abstraction.
@est JUnit.

@nabl eRabbi t RabbitMQ.

extends Speci fi cation Spock test.

@nabl eBat chProcessi ng Spring Batch.

@kssageEndpoi nt @nabl el ntegrati on Spring Integration.

@ontrol | er @RestControll er Spring MVC + Embedded Tomcat.
@nabl eWebM/c

@nabl eWebSecurity Spring Security.

2.1.0.BUILD-SNAPSHOT Spring Boot 256

Spring Boot Reference Guide

ltems Grabs
@nabl eTr ansact i onManagenent Spring Transaction Management.
Tip

See subclasses of Conpi | er Aut oConfi gurati on in the Spring Boot CLI source code to
understand exactly how customizations are applied.

Deduced “grab” Coordinates

Spring Boot extends Groovy’s standard @ ab support by letting you specify a dependency without
a group or version (for example, @x ab(' f reemar ker')). Doing so consults Spring Boot's default
dependency metadata to deduce the artifact's group and version.

Note

The default metadata is tied to the version of the CLI that you use. it changes only when you move
to a new version of the CLI, putting you in control of when the versions of your dependencies
may change. A table showing the dependencies and their versions that are included in the default
metadata can be found in the appendix.

Default Import Statements

To help reduce the size of your Groovy code, several i mport statements are automatically
included. Notice how the preceding example refers to @onponent, @est Controller, and
@Request Mappi ng without needing to use fully-qualified names or i nport statements.

Tip

Many Spring annotations work without using i nport statements. Try running your application to
see what fails before adding imports.

Automatic Main Method

Unlike the equivalent Java application, you do not need to include a public static void
mai n(String[] args) method with your G oovy scripts. A Spri ngAppl i cat i on is automatically
created, with your compiled code acting as the sour ce.

Custom Dependency Management

By default, the CLI uses the dependency management declared in spri ng- boot - dependenci es
when resolving @ ab dependencies. Additional dependency management, which overrides the default
dependency management, can be configured by using the @ependencyManagemnment Bomannotation.
The annotation’s value should specify the coordinates (gr oupl d: arti fact | d: ver si on) of one or
more Maven BOMs.

For example, consider the following declaration:

@ependencyManagenent Bon(" com exanpl e. cust om bom 1. 0. 0")

2.1.0.BUILD-SNAPSHOT Spring Boot 257

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-cli/src/main/java/org/springframework/boot/cli/compiler/CompilerAutoConfiguration.java

Spring Boot Reference Guide

The preceding declaration picks up cust om bom 1. 0. 0. pomin a Maven repository under conf
exanpl e/ cust om versions/1.0.0/.

When you specify multiple BOMs, they are applied in the order in which you declare them, as shown
in the following example:

@ependencyManagenent Bon(["com exanpl e. cust om bom 1. 0. 0",
"com exanpl e. anot her-bom 1. 0. 0"])

The preceding example indicates that the dependency management in anot her - bomoverrides the
dependency management in cust om bom

You can use @ependencyManagemnment Bomanywhere that you can use @ ab. However, to ensure
consistent ordering of the dependency management, you can use @ependencyManagenent Bomat
most once in your application. A useful source of dependency management (which is a superset of
Spring Boot’s dependency management) is the Spring 10 Platform, which you might include with the
following line:

‘ @ependencyManagenent Bon(' i 0. spri ng. pl at form pl at f orm bom 1. 1. 2. RELEASE')

66.2 Applications with Multiple Source Files

You can use “shell globbing” with all commands that accept file input. Doing so lets you use multiple
files from a single directory, as shown in the following example:

‘$ spring run *.groovy

66.3 Packaging Your Application

You can use the j ar command to package your application into a self-contained executable jar file, as
shown in the following example:

‘$ spring jar ny-app.jar *.groovy

The resulting jar contains the classes produced by compiling the application and all of the application’s
dependencies so that it can then be run by using j ava -j ar. The jar file also contains entries from
the application’s classpath. You can add and remove explicit paths to the jar by using - - i ncl ude and
- - excl ude. Both are comma-separated, and both accept prefixes, in the form of “+” and “-", to signify
that they should be removed from the defaults. The default includes are as follows:

public/**, resources/**, static/**, tenplates/**, META-INF/ **, *

The default excludes are as follows:

.*, repository/**, build/**, target/**, **/*_ jar, **/*. groovy
Type spring hel p jar onthe command line for more information.

66.4 Initialize a New Project

The i ni t command lets you create a new project by using start.spring.io without leaving the shell, as
shown in the following example:

$ spring init --dependenci es=web, data-j pa my- proj ect
Using service at https://start.spring.io
Project extracted to '/Users/devel oper/exanpl e/ ny-project’

2.1.0.BUILD-SNAPSHOT Spring Boot 258

http://platform.spring.io/
https://start.spring.io

Spring Boot Reference Guide

The preceding example creates a my- proj ect directory with a Maven-based project that uses
spring-boot -starter-webandspring-boot-starter-data-jpa. You can list the capabilities
of the service by using the - - | i st flag, as shown in the following example:

$ spring init --1ist

Capabilities of https://start.spring.io

Avai | abl e dependenci es:

actuator - Actuator: Production ready features to help you nonitor and manage your application

web - Web: Support for full-stack web devel opnent, including Tontat and spring-webmvc
websocket - Websocket: Support for WebSocket devel opnent
ws - WS: Support for Spring Wb Services

Avai |l abl e project types:

gradle-build - Gadle Config [format:build, build:gradle]

gradle-project - Gadle Project [format: project, build:gradle]
maven-build - Maven POM [format: build, build: maven]
maven- project - Maven Project [format:project, build: maven] (default)

The i ni t command supports many options. See the hel p output for more details. For instance, the
following command creates a Gradle project that uses Java 8 and war packaging:

$ spring init --build=gradle --java-version=1.8 --dependenci es=websocket --packagi ng=war sanpl e-app. zi p
Using service at https://start.spring.io
Content saved to 'sanpl e-app. zi p'

66.5 Using the Embedded Shell

Spring Boot includes command-line completion scripts for the BASH and zsh shells. If you do not use
either of these shells (perhaps you are a Windows user), you can use the shel | command to launch
an integrated shell, as shown in the following example:

$ spring shell
Spring Boot (v2.1.0.BU LD SNAPSHOT)
Ht TAB to conplete. Type \'help' and hit RETURN for help, and \'exit' to quit.

From inside the embedded shell, you can run other commands directly:

$ version
Spring CLI v2.1.0.BU LD SNAPSHOT

The embedded shell supports ANSI color output as well as t ab completion. If you need to run a native
command, you can use the ! prefix. To exit the embedded shell, pressctrl - c.

66.6 Adding Extensions to the CLI

You can add extensions to the CLI by using the i nstal | command. The command takes one or
more sets of artifact coordinates in the format gr oup: arti f act : ver si on, as shown in the following
example:

$ spring install com exanpl e: spring-boot-cli-extension: 1. 0.0. RELEASE

In addition to installing the artifacts identified by the coordinates you supply, all of the artifacts'
dependencies are also installed.

2.1.0.BUILD-SNAPSHOT Spring Boot 259

Spring Boot Reference Guide

To uninstall a dependency, use the uni nst al I command. As with the i nst al | command, it takes
one or more sets of artifact coordinates in the format of gr oup: arti f act : ver si on, as shown in the
following example:

$ spring uninstall com exanpl e:spring-boot-cli-extension:1.0.0. RELEASE

It uninstalls the artifacts identified by the coordinates you supply and their dependencies.

To uninstall all additional dependencies, you can use the --al | option, as shown in the following
example:

$ spring uninstall --all

2.1.0.BUILD-SNAPSHOT Spring Boot 260

Spring Boot Reference Guide

67. Developing Applications with the Groovy Beans
DSL

Spring Framework 4.0 has native support for a beans{} “DSL” (borrowed from Grails), and you can
embed bean definitions in your Groovy application scripts by using the same format. This is sometimes a
good way to include external features like middleware declarations, as shown in the following example:

@onfiguration
class Application inplenments CommandLi neRunner {

@\ut owi r ed
Shar edSer vi ce service

@verride
void run(String... args) {
println service. message

}
}
i nport ny.conpany. SharedServi ce
beans {

servi ce(SharedServi ce) {
nmessage = "Hello World"

}

}

You can mix class declarations with beans{} in the same file as long as they stay at the top level, or,
if you prefer, you can put the beans DSL in a separate file.

2.1.0.BUILD-SNAPSHOT Spring Boot 261

http://grails.org/

Spring Boot Reference Guide

68. Configuring the CLI with setti ngs. xm

The Spring Boot CLI uses Aether, Maven’s dependency resolution engine, to resolve dependencies.
The CLI makes use of the Maven configuration found in ~/ . n2/ set ti ngs. xm to configure Aether.
The following configuration settings are honored by the CLI:

» Offline

» Mirrors

» Servers

» Proxies

» Profiles
 Activation

* Repositories

Active profiles

See Maven'’s settings documentation for further information.

2.1.0.BUILD-SNAPSHOT Spring Boot 262

https://maven.apache.org/settings.html

Spring Boot Reference Guide

69. What to Read Next

There are some sample groovy scripts available from the GitHub repository that you can use to try out
the Spring Boot CLI. There is also extensive Javadoc throughout the source code.

If you find that you reach the limit of the CLI tool, you probably want to look at converting your application
to a full Gradle or Maven built “Groovy project”. The next section covers Spring Boot's "Build tool plugins",
which you can use with Gradle or Maven.

2.1.0.BUILD-SNAPSHOT Spring Boot 263

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-cli/samples
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-cli/src/main/java/org/springframework/boot/cli

Part VIII. Build tool plugins

Spring Boot provides build tool plugins for Maven and Gradle. The plugins offer a variety of features,
including the packaging of executable jars. This section provides more details on both plugins as well
as some help should you need to extend an unsupported build system. If you are just getting started,
you might want to read “Chapter 13, Build Systems” from the “Part Ill, “Using Spring Boot™ section first.

Spring Boot Reference Guide

70. Spring Boot Maven Plugin

The Spring Boot Maven Plugin provides Spring Boot support in Maven, letting you package executable
jar or war archives and run an application “in-place”. To use it, you must use Maven 3.2 (or later).

Note

See the Spring Boot Maven Plugin Site for complete plugin documentation.

70.1 Including the Plugin

To use the Spring Boot Maven Plugin, include the appropriate XML in the pl ugi ns section of your
pom xnl , as shown in the following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven-4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<l-- ... -->
<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-mven-plugin</artifactld>
<versi on>2.1.0. BUl LD- SNAPSHOT</ ver si on>
<executions>
<execution>
<goal s>
<goal >r epackage</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

The preceding configuration repackages a jar or war that is built during the package phase of the
Maven lifecycle. The following example shows both the repackaged jar as well as the original jar in the
t ar get directory:

$ nvn package
$ |Is target/*.jar
target/nyproject-1.0.0.jar target/nyproject-1.0.0.jar.origina

If you do not include the <execut i on/ > configuration, as shown in the prior example, you can run the
plugin on its own (but only if the package goal is used as well), as shown in the following example:

$ nvn package spring-boot:repackage
$ |s target/*.jar
target/ myproject-1.0.0.jar target/nyproject-1.0.0.jar.original

If you use a milestone or snapshot release, you also need to add the appropriate pl ugi nReposi tory
elements, as shown in the following listing:

<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>spring- snapshot s</i d>
<url>https://repo.spring.iol/snapshot</url>
</ pl ugi nReposi tory>
<pl ugi nReposi t ory>

2.1.0.BUILD-SNAPSHOT Spring Boot 265

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/maven-plugin
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/maven-plugin

Spring Boot Reference Guide

<i d>spring-m|estones</id>
<url >https://repo.spring.io/nlestone</url>
</ pl ugi nReposi tory>
</ pl ugi nReposi tori es>

70.2 Packaging Executable Jar and War Files

Once spri ng- boot - maven- pl ugi n has been included in your pom xmi , it automatically tries to
rewrite archives to make them executable by using the spri ng- boot : r epackage goal. You should
configure your project to build a jar or war (as appropriate) by using the usual packagi ng element, as
shown in the following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >

<l-- .0 -->
<packagi ng>j ar </ packagi ng>
<l-- ... -->

</ proj ect >

Your existing archive is enhanced by Spring Boot during the package phase. The main class that you
want to launch can be specified either by using a configuration option or by adding a Mai n- Cl ass
attribute to the manifest in the usual way. If you do not specify a main class, the plugin searches for a
classwithapublic static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ nmvn package
$ java -jar target/ nynodul e-0. 0. 1- SNAPSHOT. j ar

To build a war file that is both executable and deployable into an external container, you need to mark
the embedded container dependencies as “provided”, as shown in the following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // wwv w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >

<l-- ... -->
<packagi ng>war </ packagi ng>
<l-- ... -->

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactld>
<scope>provi ded</ scope>
</ dependency>
<l-- ... -->
</ dependenci es>
</ proj ect >

Tip

"

See the “Section 91.1, “Create a Deployable War File™ section for more details on how to create

a deployable war file.

Advanced configuration options and examples are available in the plugin info page.

2.1.0.BUILD-SNAPSHOT Spring Boot 266

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/maven-plugin

Spring Boot Reference Guide

71. Spring Boot Gradle Plugin

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, letting you package executable
jar or war archives, run Spring Boot applications, and use the dependency management provided
by spri ng- boot - dependenci es. It requires Gradle 4.4 or later. Please refer to the plugin’'s
documentation to learn more:

» Reference (HTML and PDF)

* API

2.1.0.BUILD-SNAPSHOT Spring Boot 267

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/gradle-plugin/reference/html
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/gradle-plugin/reference/pdf/spring-boot-gradle-plugin-reference.pdf
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/gradle-plugin/api

Spring Boot Reference Guide

72. Spring Boot AntLib Module

The Spring Boot AntLib module provides basic Spring Boot support for Apache Ant. You can use the
module to create executable jars. To use the module, you need to declare an additional spri ng- boot
namespace in your bui | d. xni , as shown in the following example:

<proj ect xmns:ivy="antlib: org.apache.ivy.ant"
xm ns: spring-boot="antlib: org. springframework. boot. ant"
name="nyapp" defaul t="build">

</ proj ect >

You need to remember to start Ant using the -1 i b option, as shown in the following example:

$ ant -lib <folder containing spring-boot-antlib-2.1.0.BU LD SNAPSHOT. j ar >

Tip

The “Using Spring Boot” section includes a more complete example of using Apache Ant with
spring-boot-antlib.

72.1 Spring Boot Ant Tasks

Once the spri ng-boot - ant | i b namespace has been declared, the following additional tasks are
available:

» the section called “spri ng- boot : exej ar”

e Section 72.2, “spri ng- boot : fi ndmai ncl ass”

spri ng- boot : exej ar

You can use the exej ar task to create a Spring Boot executable jar. The following attributes are
supported by the task:

Attribute Description Required

destfile The destination jar file to create Yes

cl asses The root directory of Java class files Yes

start-cl ass The main application class to run No (the default is the first class found

that declares a mai n method)

The following nested elements can be used with the task:

Element Description

resour ces One or more Resource Collections describing a set of Resources that should
be added to the content of the created jar file.

lib One or more Resource Collections that should be added to the set of jar
libraries that make up the runtime dependency classpath of the application.

2.1.0.BUILD-SNAPSHOT Spring Boot 268

http://ant.apache.org/manual/Types/resources.html#collection
http://ant.apache.org/manual/Types/resources.html
http://ant.apache.org/manual/Types/resources.html#collection

Spring Boot Reference Guide

Examples
This section shows two examples of Ant tasks.

Specify start-class.

<spring-boot:exejar destfile="target/ny-application.jar"
cl asses="target/cl asses" start-class="com exanpl e. M/Appl i cation">
<r esour ces>
<fileset dir="src/ min/resources" />
</ resour ces>
<l'i b>
<fileset dir="lib" />
</lib>
</ spring-boot : exej ar >

Detect start-class.

<exej ar destfile="target/ ny-application.jar" classes="target/cl asses">
<lib>

<fileset dir="lib" />

</lib>
</ exej ar >

72.2 spring-boot: fi ndmai ncl ass

The fi ndmai ncl ass taskis used internally by exej ar to locate a class declaring a mai n. If necessary,
you can also use this task directly in your build. The following attributes are supported:

Attribute Description Required
cl assesr oot The root directory of Java class files Yes (unless mai ncl ass is specified)
mai ncl ass Can be used to short-circuit the mai n~ No

class search

property The Ant property that should be set No (result will be logged if unspecified)
with the result

Examples
This section contains three examples of using f i ndnai ncl ass.

Find and log.

<findmai ncl ass cl assesroot="target/cl asses" />

Find and set.

<findmai ncl ass cl assesroot="target/cl asses" property="main-class" />

Override and set.

<findmai ncl ass nai ncl ass="com exanpl e. Mai nCl ass" property="mai n-cl ass" />

2.1.0.BUILD-SNAPSHOT Spring Boot 269

Spring Boot Reference Guide

73. Supporting Other Build Systems

If you want to use a build tool other than Maven, Gradle, or Ant, you likely need to develop your own
plugin. Executable jars need to follow a specific format and certain entries need to be written in an
uncompressed form (see the “executable jar format” section in the appendix for details).

The Spring Boot Maven and Gradle plugins both make use of spri ng-boot -1 oader-tool s to
actually generate jars. If you need to, you may use this library directly.

73.1 Repackaging Archives

To repackage an existing archive so that it becomes a self-contained executable archive, use
org. spri ngframewor k. boot . | oader . t ool s. Repackager. The Repackager class takes a
single constructor argument that refers to an existing jar or war archive. Use one of the two available
repackage() methods to either replace the original file or write to a new destination. Various settings
can also be configured on the repackager before it is run.

73.2 Nested Libraries

When repackaging an archive, you can include references to dependency files by using the
org. springframework. boot . | oader.tool s. Li brari es interface. We do not provide any
concrete implementations of Li br ari es here as they are usually build-system-specific.

If your archive already includes libraries, you can use Li br ari es. NONE.

73.3 Finding a Main Class

If you do not use Repackager . set Mai nCl ass() to specify a main class, the repackager uses ASM
to read class files and tries to find a suitable class with a public static void main(String[]
ar gs) method. An exception is thrown if more than one candidate is found.

73.4 Example Repackage Implementation

The following example shows a typical repackage implementation:

Repackager repackager = new Repackager (sourcedarFile);
repackager . set BackupSour ce(f al se);
repackager . repackage(new Libraries() {
@verride
public void doWthLibraries(LibraryCal |l back cal |l back) throws | CException {
/] Build system specific inplenentation, callback for each dependency
/'l call back.library(new Library(nestedFile, LibraryScope. COWILE));

}
1)

2.1.0.BUILD-SNAPSHOT Spring Boot 270

http://asm.ow2.org/

Spring Boot Reference Guide

74. What to Read Next

If you are interested in how the build tool plugins work, you can look at the spri ng- boot -t ool s
module on GitHub. More technical details of the executable jar format are covered in the appendix.

If you have specific build-related questions, you can check out the “how-to” guides.

2.1.0.BUILD-SNAPSHOT Spring Boot 271

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-tools

Part IX. ‘How-to’ guides

This section provides answers to some common ‘how do | do that...” questions that often arise when
using Spring Boot. Its coverage is not exhaustive, but it does cover quite a lot.

If you have a specific problem that we do not cover here, you might want to check out stackoverflow.com
to see if someone has already provided an answer. This is also a great place to ask new questions
(please use the spri ng- boot tag).

We are also more than happy to extend this section. If you want to add a *how-to’, send us a pull request.

https://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/tree/master

Spring Boot Reference Guide

75. Spring Boot Application

This section includes topics relating directly to Spring Boot applications.

75.1 Create Your Own FailureAnalyzer

Fai | ur eAnal yzer is agreatway to intercept an exception on startup and turn it into a human-readable
message, wrapped in a Fai | ur eAnal ysi s. Spring Boot provides such an analyzer for application-
context-related exceptions, JSR-303 validations, and more. You can also create your own.

Abstract Fai | ureAnal yzer is a convenient extension of Fai | ureAnal yzer that checks the
presence of a specified exception type in the exception to handle. You can extend from that so that your
implementation gets a chance to handle the exception only when it is actually present. If, for whatever
reason, you cannot handle the exception, return nul I to give another implementation a chance to
handle the exception.

Fai | ur eAnal yzer implementations must be registered in META- | NF/ spring. factories. The
following example registers Pr oj ect Const r ai nt Vi ol ati onFai | ureAnal yzer:

or g. spri ngframewor k. boot . di agnosti cs. Fai | ur eAnal yzer =\
com exanpl e. Proj ect Const rai nt Vi ol ati onFai | ur eAnal yzer

Note

If you need access to the BeanFact ory or the Envi ronnent, your Fai | ureAnal yzer can
simply implement BeanFact or yAwar e or Envi r onment Awar e respectively.

75.2 Troubleshoot Auto-configuration

The Spring Boot auto-configuration tries its best to “do the right thing”, but sometimes things fail, and
it can be hard to tell why.

There is a really useful ConditionEval uati onReport available in any Spring Boot
Appl i cati onCont ext . You can see it if you enable DEBUG logging output. If you use the spri ng-
boot - act uat or (see the Actuator chapter), there is also a condi t i ons endpoint that renders the
report in JSON. Use that endpoint to debug the application and see what features have been added
(and which have not been added) by Spring Boot at runtime.

Many more questions can be answered by looking at the source code and the Javadoc. When reading
the code, remember the following rules of thumb:

» Look for classes called * Aut oConf i gur ati on and read their sources. Pay special attention to the
@Condi ti onal * annotations to find out what features they enable and when. Add - - debug to the
command line or a System property - Ddebug to get a log on the console of all the auto-configuration
decisions that were made in your app. In a running Actuator app, look at the condi t i ons endpoint
(/act uat or/ condi ti ons or the JMX equivalent) for the same information.

» Look for classes that are @Confi gurati onProperties (such as ServerProperties) and
read from there the available external configuration options. The @onf i gur ati onProperti es
annotation has a nane attribute that acts as a prefix to external properties. Thus,
Server Properties has prefi x="server" and its configuration properties are server. port,
server. addr ess, and others. In a running Actuator app, look at the conf i gpr ops endpoint.

2.1.0.BUILD-SNAPSHOT Spring Boot 273

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/diagnostics/FailureAnalyzer.html
https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/diagnostics/FailureAnalysis.html
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

» Look for uses of the bi nd method on the Bi nder to pull configuration values explicitly out of the
Envi ronment in a relaxed manner. It is often used with a prefix.

» Look for @/al ue annotations that bind directly to the Envi r onnent .

» Look for @ondi t i onal OnExpr essi on annotations that switch features on and off in response to
SpEL expressions, normally evaluated with placeholders resolved from the Envi r onnment .

75.3 Customize the Environment or ApplicationContext Before
It Starts

A SpringApplicationhasApplicationLi stenersandApplicationContextlnitializers
that are used to apply customizations to the context or environment. Spring Boot loads a number of
such customizations for use internally from META- | NF/ spri ng. f act ori es. There is more than one
way to register additional customizations:

» Programmatically, per application, by calling the addLi st ener s and addl niti al i zer s methods
on Spri ngAppl i cati on before you run it.

* Declaratively, per application, by setting the context.initializer.classes or
context.!listener.cl asses properties.

» Declaratively, for all applications, by adding a META- | NF/ spri ng. f act ori es and packaging a jar
file that the applications all use as a library.

The SpringApplication sends some special Applicati onEvents to the listeners (some
even before the context is created) and then registers the listeners for events published by the
Appl i cati onCont ext as well. See “Section 23.5, “Application Events and Listeners™ in the ‘Spring
Boot features’ section for a complete list.

It is also possible to customize the Envi r onnment before the application context is refreshed by
using Envi r onnent Post Processor. Each implementation should be registered in META- | NF/
spring. factories, as shown in the following example:

or g. spri ngf ramewor k. boot . env. Envi r onment Post Pr ocessor =com exanpl e. Your Envi r onnment Post Pr ocessor

The implementation can load arbitrary files and add them to the Envi r onnent . For instance, the
following example loads a YAML configuration file from the classpath:

public class Environnent Post Processor Exanpl e i npl enents Envi r onnent Post Processor {
private final Yam PropertySourcelLoader | oader = new Yan PropertySourceLoader();

@verride
public voi d postProcessEnvironnent (Confi gurabl eEnvironnment environnent,
SpringApplication application) {
Resource path = new C assPat hResour ce("conl exanpl e/ nyapp/ config.ym");
PropertySource<?> propertySource = | oadYan (path);
envi ronnent . get PropertySources().addLast (propertySource);

}

private PropertySource<?> | oadYam (Resource path) {
if (!path.exists()) {
throw new ||| egal Argunent Exception("Resource " + path + " does not exist");
}
try {
return this.loader.|oad("customresource", path).get(0);

}

2.1.0.BUILD-SNAPSHOT Spring Boot 274

Spring Boot Reference Guide

catch (1 OException ex) {
throw new ||| egal St at eExcepti on(
"Failed to |l oad yaml configuration from" + path, ex);
}
}

}

Tip

The Envi ronnment has already been prepared with all the usual property sources that Spring
Boot loads by default. It is therefore possible to get the location of the file from the environment.
The preceding example adds the cust om r esour ce property source at the end of the list so
that a key defined in any of the usual other locations takes precedence. A custom implementation
may define another order.

Caution

While using @°r opertySource on your @spri ngBoot Application may seem to be a
convenient and easy way to load a custom resource in the Envi r onnent , we do not recommend
it, because Spring Boot prepares the Envi r onnment before the Appli cati onCont ext is
refreshed. Any key defined with @°r oper t ySour ce is loaded too late to have any effect on auto-
configuration.

75.4 Build an ApplicationContext Hierarchy (Adding a Parent or
Root Context)
You can use the ApplicationBuil der class to create parent/child Appli cati onCont ext

hierarchies. See “Section 23.4, “Fluent Builder API™ in the ‘Spring Boot features’ section for more
information.

75.5 Create a Non-web Application

Not all Spring applications have to be web applications (or web services). If you want to execute
some code in a mai n method but also bootstrap a Spring application to set up the infrastructure
to use, you can use the Spri ngApplicati on features of Spring Boot. A Spri ngApplication
changes its Appl i cat i onCont ext class, depending on whether it thinks it needs a web application
or not. The first thing you can do to help it is to leave server-related dependencies (e.g. servlet API)
off the classpath. If you cannot do that (for example, you run two applications from the same code
base) then you can explicitly call set WebAppl i cat i onType(WebAppl i cati onType. NONE) onyour
Spri ngAppl i cati on instance or set the appl i cat i onCont ext Cl ass property (through the Java
API or with external properties). Application code that you want to run as your business logic can be
implemented as a ConmandLi neRunner and dropped into the context as a @ean definition.

2.1.0.BUILD-SNAPSHOT Spring Boot 275

Spring Boot Reference Guide

76. Properties and Configuration

This section includes topics about setting and reading properties and configuration settings and their
interaction with Spring Boot applications.

76.1 Automatically Expand Properties at Build Time

Rather than hardcoding some properties that are also specified in your project’s build configuration,
you can automatically expand them by instead using the existing build configuration. This is possible
in both Maven and Gradle.

Automatic Property Expansion Using Maven
You can automatically expand properties from the Maven project by using resource filtering. If you use

the spri ng- boot - st art er - par ent, you can then refer to your Maven ‘project properties’ with @ . @
placeholders, as shown in the following example:

app. encodi ng=@r oj ect . bui | d. sour ceEncodi ng@
app. j ava. ver si on=@ ava. ver si on@

Note

Only production configuration is filtered that way (in other words, no filtering is applied on sr c/
t est/ resources).

Tip

If you enable the addResour ces flag, the spri ng-boot:run goal can add src/ mai n/
resour ces directly to the classpath (for hot reloading purposes). Doing so circumvents the
resource filtering and this feature. Instead, you can use the exec: j ava goal or customize the
plugin’s configuration. See the plugin usage page for more details.

If you do not use the starter parent, you need to include the following element inside the <bui I d/ >
element of your pom xmi :

<resour ces>

<resource>
<directory>src/ mai n/resources</directory>
<filtering>true</filtering>

</ resource>

</ resour ces>

You also need to include the following element inside <pl ugi ns/ >:

<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact|d>maven-resources-plugin</artifactld>
<ver si on>2. 7</ ver si on>
<configuration>
<delimters>
<delimter>@/delimter>
</delimters>
<useDef aul t Del i mi t er s>f al se</ useDef aul t Del i m ters>
</ configuration>
</ pl ugi n>

2.1.0.BUILD-SNAPSHOT Spring Boot 276

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/maven-plugin/usage.html

Spring Boot Reference Guide

Note

The useDef aul t Del i mi t ers property is important if you use standard Spring placeholders
(such as ${ pl acehol der }) in your configuration. If that property is not set to f al se, these may
be expanded by the build.

Automatic Property Expansion Using Gradle

You can automatically expand properties from the Gradle project by configuring the Java plugin’s
processResour ces task to do so, as shown in the following example:

processResour ces {
expand(proj ect. properties)

}

You can then refer to your Gradle project’s properties by using placeholders, as shown in the following
example:

app. nane=${ nane}
app. descri pti on=${descri pti on}

Note

Gradle's expand method uses Groovy's Si npl eTenpl at eEngi ne, which transforms ${. .}
tokens. The ${..} style conflicts with Spring’s own property placeholder mechanism. To use
Spring property placeholders together with automatic expansion, escape the Spring property
placeholders as follows: \ ${. . }.

76.2 Externalize the Configuration of Spri ngAppl i cati on

A Spri ngAppl i cation has bean properties (mainly setters), so you can use its Java APl as you
create the application to modify its behavior. Alternatively, you can externalize the configuration by
setting properties in spri ng. mai n. *. For example, in appl i cati on. properti es, you might have
the following settings:

spring. mai n. web- appl i cati on-type=none
spring. mai n. banner - node=of f

Then the Spring Boot banner is not printed on startup, and the application is not starting an embedded
web server.

Properties defined in external configuration override the values specified with the Java API, with the
notable exception of the sources used to create the Appl i cati onCont ext . Consider the following
application:

new Spri ngApplicationBuil der()
. banner Mbde(Banner . Mbde. OFF)
. sour ces(denp. MyApp. cl ass)
.run(args);

Now consider the following configuration:

spring. mai n. sour ces=com acne. Confi g, com acne. ExtraConfi g
spring. mai n. banner - nnde=consol e

2.1.0.BUILD-SNAPSHOT Spring Boot 277

Spring Boot Reference Guide

The actual application now shows the banner (as overridden by configuration) and uses three
sources for the Appl i cat i onCont ext (in the following order): deno. MyApp, com acne. Confi g,
and com acne. ExtraConfi g.

76.3 Change the Location of External Properties of an
Application

By default, properties from different sources are added to the Spring Envi r onnent in a defined order
(see “Chapter 24, Externalized Configuration” in the ‘Spring Boot features’ section for the exact order).

A nice way to augment and modify this ordering is to add @r opert ySour ce annotations to your
application sources. Classes passed to the Spri ngAppl i cati on static convenience methods and
those added using set Sour ces() are inspected to see if they have @Pr opert ySour ces. If they
do, those properties are added to the Envi r onnment early enough to be used in all phases of the
Appl i cati onCont ext lifecycle. Properties added in this way have lower priority than any added by
using the default locations (such as appl i cati on. properti es), system properties, environment
variables, or the command line.

You can also provide the following System properties (or environment variables) to change the behavior:

e spring. config. nanme (SPRI NG_CONFI G_NAME): Defaults to appl i cati on as the root of the file
name.

* spring.config.location (SPRI NG CONFI G_LOCATI ON): The file to load (such as a classpath
resource or a URL). A separate Envi r onnent property source is set up for this document and it can
be overridden by system properties, environment variables, or the command line.

No matter what you set in the environment, Spring Boot always loads appl i cati on. properti es as
described above. By default, if YAML is used, then files with the ‘.ymI’ extension are also added to the list.

Spring Boot logs the configuration files that are loaded at the DEBUG level and the candidates it has
not found at TRACE level.

See Confi gFi | eAppli cati onLi st ener for more detail.

76.4 Use ‘Short’ Command Line Arguments

Some people like to use (for example) - - port =9000 instead of - - server. port=9000 to set
configuration properties on the command line. You can enable this behavior by using placeholders in
appl i cation. properti es, as shown in the following example:

server. port=${port: 8080}

Tip

If you inherit from the spri ng- boot - starter-parent POM, the default filter token of the
maven- r esour ces- pl ugi ns has been changed from ${*} to @(that is, @maven. t oken@
instead of ${ maven. t oken}) to prevent conflicts with Spring-style placeholders. If you have
enabled Maven filtering for the appl i cati on. properti es directly, you may want to also
change the default filter token to use other delimiters.

2.1.0.BUILD-SNAPSHOT Spring Boot 278

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java
https://maven.apache.org/plugins/maven-resources-plugin/resources-mojo.html#delimiters

Spring Boot Reference Guide

Note

In this specific case, the port binding works in a PaaS environment such as Heroku or Cloud
Foundry. In those two platforms, the PORT environment variable is set automatically and Spring
can bind to capitalized synonyms for Envi r onnment properties.

76.5 Use YAML for External Properties

YAML is a superset of JSON and, as such, is a convenient syntax for storing external properties in a
hierarchical format, as shown in the following example:

spring:
application:
nane: cruncher
dat asour ce:
driverCl assNane: com nysql .jdbc. Driver
url: jdbc:nysql://1ocal host/test
server:
port: 9000

Create a file called appl i cati on. ym and put it in the root of your classpath. Then add snakeyamni
to your dependencies (Maven coordinates or g. yam : snakeyani , already included if you use the
spring-boot-starter). A YAML file is parsed to a Java Map<Stri ng, Qoj ect > (like a JSON
object), and Spring Boot flattens the map so that it is one level deep and has period-separated keys, as
many people are used to with Pr operti es files in Java.

The preceding example YAML corresponds to the following appl i cati on. properti es file:

spring. appl i cati on. nanme=cr uncher

spring. dat asour ce. dri ver Cl assNane=com nysql . j dbc. Dri ver
spring. dat asour ce. url =j dbc: mysql : / /1 ocal host/t est
server. port=9000

See “Section 24.6, “Using YAML Instead of Properties™ in the ‘Spring Boot features’ section for more
information about YAML.

76.6 Set the Active Spring Profiles

The Spring Envi ronnent has an API for this, but you would normally set a System property
(spring.profil es.active)or an OS environment variable (SPRI NG_PROFI LES_ACTI VE). Also,
you can launch your application with a - D argument (remember to put it before the main class or jar
archive), as follows:

‘ $ java -jar -Dspring.profiles.active=production denp-0.0.1- SNAPSHOT. j ar

In Spring Boot, you can also set the active profile in appl i cati on. properti es, as shown in the
following example:

spring. profiles.active=production

A value set this way is replaced by the System property or environment variable setting but not by
the Spri ngAppl i cati onBuil der. profil es() method. Thus, the latter Java API can be used to
augment the profiles without changing the defaults.

See “Chapter 25, Profiles” in the “Spring Boot features” section for more information.

2.1.0.BUILD-SNAPSHOT Spring Boot 279

Spring Boot Reference Guide

76.7 Change Configuration Depending on the Environment

A YAML file is actually a sequence of documents separated by - - - lines, and each document is parsed
separately to a flattened map.

If a YAML document contains a spri ng. pr of i | es key, then the profiles value (a comma-separated
list of profiles) is fed into the Spring Envi r onment . accept sProfil es() method. If any of those
profiles is active, that document is included in the final merge (otherwise, it is not), as shown in the
following example:

server:
port: 9000

spring:

profiles: devel opnment
server:

port: 9001

spring:

profiles: production
server:

port: O

In the preceding example, the default port is 9000. However, if the Spring profile called ‘development’
is active, then the port is 9001. If ‘production’ is active, then the port is 0.

Note

The YAML documents are merged in the order in which they are encountered. Later values
override earlier values.

To do the same thing with properties files, you can use appl i cati on-${profil e}. propertiesto
specify profile-specific values.

76.8 Discover Built-in Options for External Properties

Spring Boot binds external properties from appl i cati on. properties (or .ym files and other
places) into an application at runtime. There is not (and technically cannot be) an exhaustive list of all
supported properties in a single location, because contributions can come from additional jar files on
your classpath.

A running application with the Actuator features has a conf i gpr ops endpoint that shows all the bound
and bindable properties available through @onf i gur ati onProperti es.

The appendix includes an application. properties example with a list of the most common
properties supported by Spring Boot. The definitive list comes from searching the source code for
@Confi gurationProperties and @al ue annotations as well as the occasional use of Bi nder.
For more about the exact ordering of loading properties, see "Chapter 24, Externalized Configuration".

2.1.0.BUILD-SNAPSHOT Spring Boot 280

Spring Boot Reference Guide

77. Embedded Webh Servers

Each Spring Boot web application includes an embedded web server. This feature leads to a number of
how-to questions, including how to change the embedded server and how to configure the embedded

server. This section answers those questions.

77.1 Use Another Web Server

Many Spring Boot starters include default embedded containers.

» For servlet stack applications, the spri ng- boot - starter-web includes Tomcat by including
spring-boot -starter-tontat, but you canuse spri ng-boot-starter-jetty orspring-

boot - st art er-undert owinstead.

» For reactive stack applications, the spri ng- boot - st art er - webf | ux includes Reactor Netty by
including spri ng- boot -starter-reactor-netty, butyou can use spri ng-boot-starter-

tontat, spring-boot-starter-jetty,orspring-boot-starter-undertowinstead.

When switching to a different HTTP server, you need to exclude the default dependencies in addition
to including the one you need. Spring Boot provides separate starters for HTTP servers to help make

this process as easy as possible.

The following Maven example shows how to exclude Tomcat and include Jetty for Spring MVC:

<properties>
<servl et -api.version>3. 1. 0</servl et-api.version>
</ properties>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<l-- Exclude the Tontat dependency -->
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-tonctat</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<l-- Use Jetty instead -->
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-jetty</artifactl|d>
</ dependency>

Note

The version of the Servlet API has been overridden as, unlike Tomcat 9 and Undertow 2.0, Jetty

9.4 does not support Servlet 4.0.

The following Gradle example shows how to exclude Netty and include Undertow for Spring WebFlux:

configurations {
/] exclude Reactor Netty

}
dependenci es {

/1 Use Undertow instead

conpi | e. excl ude nodul e: 'spring-boot-starter-reactor-netty’

conpi l e "org. springfranmework. boot : spri ng-boot -starter-webfl ux'

conpi l e 'org. springframewor k. boot: spring-boot -starter-undertow

2.1.0.BUILD-SNAPSHOT Spring Boot

281

Spring Boot Reference Guide

...

Note

spring-boot -starter-reactor-netty isrequiredtousethe WbC i ent class, so you may
need to keep a dependency on Netty even when you need to include a different HTTP server.

77.2 Disabling the Web Server

If your classpath contains the necessary bits to start a web server, Spring Boot will automatically start it.
To disable this behaviour configure the WebAppl i cat i onType in your appl i cati on. properties,
as shown in the following example:

spring. mai n. web- appl i cati on-type=none

77.3 Change the HTTP Port

In a standalone application, the main HTTP port defaults to 8080 but can be set with server. port
(for example, in appl i cati on. properti es or as a System property). Thanks to relaxed binding of
Envi r onnent values, you can also use SERVER _PORT (for example, as an OS environment variable).

To switch off the HTTP endpoints completely but still create a WebAppl i cati onCont ext, use
server. port=-1. (Doing so is sometimes useful for testing.)

”

For more details, see “the section called “Customizing Embedded Servlet Containers
Boot features’ section, or the Ser ver Pr operti es source code.

77.4 Use a Random Unassigned HTTP Port

in the ‘Spring

To scan for a free port (using OS natives to prevent clashes) use server . port =0.

77.5 Discover the HTTP Port at Runtime

You can access the port the server is running on from log output or from
the Servl et WebSer ver Appl i cati onCont ext through its WebServer. The best way to
get that and be sure that it has been initialized is to add a @Bean of type
Appl i cationLi st ener <Servl et WebServerlInitializedEvent > and pull the container out of
the event when it is published.

Tests that use @pr i ngBoot Test (webEnvi r onnent =\WebEnvi r onnment . RANDOM _PORT) can also
inject the actual port into a field by using the @.ocal Ser ver Port annotation, as shown in the following
example:

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@bpr i ngBoot Test (webEnvi r onment =\WWebEnvi r onnment . RANDOM_PORT)
public class MyWebl ntegrationTests {

@\ut owi r ed
Ser vl et WebSer ver Appl i cati onCont ext server;

@.ocal Server Port
int port;

...

2.1.0.BUILD-SNAPSHOT Spring Boot 282

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

Note

@.ocal Server Port is a meta-annotation for @/al ue(" ${I ocal . server.port}"). Do not
try to inject the port in a regular application. As we just saw, the value is set only after the container
has been initialized. Contrary to a test, application code callbacks are processed early (before
the value is actually available).

77.6 Enable HTTP Response Compression

HTTP response compression is supported by Jetty, Tomcat, and Undertow. It can be enabled in
application. properties, as follows:

server. conpressi on. enabl ed=true

By default, responses must be at least 2048 bytes in length for compression to be performed. You can
configure this behavior by setting the ser ver . conpr essi on. m n-response- si ze property.

By default, responses are compressed only if their content type is one of the following:

text/htm

e text/xni

text/plain

* text/css

* text/javascript

» application/javascript
e application/json

e application/xm

You can configure this behavior by setting the ser ver . conpr essi on. m nme-t ypes property.

77.7 Configure SSL

SSL can be configured declaratively by setting the various server. ssl.* properties, typically
in appl i cation. properties or application.ymn . The following example shows setting SSL
properties in appl i cati on. properties:

server. port=8443

server. ssl. key-store=cl asspat h: keystore. j ks
server. ssl . key- st ore- passwor d=secr et

server. ssl . key- passwor d=anot her - secr et

See Ss| for details of all of the supported properties.

Using configuration such as the preceding example means the application no longer supports a plain
HTTP connector at port 8080. Spring Boot does not support the configuration of both an HTTP connector
and an HTTPS connector through appl i cati on. properti es. If you want to have both, you need
to configure one of them programmatically. We recommend using appl i cati on. properties to

2.1.0.BUILD-SNAPSHOT Spring Boot 283

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/web/server/Ssl.java

Spring Boot Reference Guide

configure HTTPS, as the HTTP connector is the easier of the two to configure programmatically. See
the spri ng- boot - sanpl e-t ontat - mul ti - connect or s sample project for an example.

77.8 Configure HTTP/2

You can enable HTTP/2 support in your Spring Boot application with the server . htt p2. enabl ed
configuration property. This support depends on the chosen web server and the application environment,
since that protocol is not supported out-of-the-box by JDK8.

Note

Spring Boot does not support h2c, the cleartext version of the HTTP/2 protocol. So you must
configure SSL first.

HTTP/2 with Undertow

As of Undertow 1.4.0+, HTTP/2 is supported without any additional requirement on JDKS8.

HTTP/2 with Jetty

As of Jetty 9.4.8, HTTP/2 is also supported with the Conscrypt library. To enable that support,

your application needs to have two additional dependencies: org. ecl i pse.jetty:jetty-al pn-
conscrypt-server andorg. eclipse.jetty. http2: http2-server.

HTTP/2 with Tomcat

Spring Boot ships by default with Tomcat 9.0.x which supports HTTP/2 out of the box when using JDK 9
or later. Alternatively, HTTP/2 can be used on JDK 8 if the | i bt cnat i ve library and its dependencies
are installed on the host operating system.

The library folder must be made available, if not already, to the JVM library path. You can do so with
aJVM argumentsuchas-Dj ava. |l i brary. path=/usr/ | ocal / opt/tontat-native/lib.More
on this in the official Tomcat documentation.

Starting Tomcat 9.0.x on JDK 8 without that native support logs the following error:

ERROR 8787 --- [mai n] o0.a.coyote. httpll. HtpllNi oProtocol : The upgrade handl er
[org. apache. coyote. htt p2. Htt p2Protocol] for [h2] only supports upgrade via ALPN but has been configured
for the ["https-jsse-nio-8443"] connector that does not support ALPN.

This error is not fatal, and the application still starts with HTTP/1.1 SSL support.
HTTP/2 with Reactor Netty

The spri ng- boot - webf | ux- st art er is using by default Reactor Netty as a server. Reactor Netty
can be configured for HTTP/2 using the JDK support with JDK 9 or later. For JDK 8 environments, or
for optimal runtime performance, this server also supports HTTP/2 with native libraries. To enable that,
your application needs to have an additional dependency.

Spring Boot manages the version for the i 0. netty: netty-tcnati ve-boringssl-static "uber
jar", containing native libraries for all platforms. Developers can choose to import only the required
dependencies using a classifier (see the Netty official documentation).

2.1.0.BUILD-SNAPSHOT Spring Boot 284

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-tomcat-multi-connectors
https://www.conscrypt.org/
https://tomcat.apache.org/tomcat-9.0-doc/apr.html
http://netty.io/wiki/forked-tomcat-native.html

Spring Boot Reference Guide

77.9 Configure the Web Server

Generally, you should first consider using one of the many available configuration keys and customize
your web server by adding new entries in your appl i cati on. properties (orapplication.ym,
or environment, etc. see “Section 76.8, “Discover Built-in Options for External Properties™). The
server.* namespace is quite useful here, and it includes namespaces like server.tontat. *,
server.jetty.* and others, for server-specific features. See the list of Appendix A, Common
application properties.

The previous sections covered already many common use cases, such as compression, SSL or
HTTP/2. However, if a configuration key doesn’t exist for your use case, you should then look at
WebSer ver Fact or yCust omi zer . You can declare such a component and get access to the server
factory relevant to your choice: you should select the variant for the chosen Server (Tomcat, Jetty,
Reactor Netty, Undertow) and the chosen web stack (Servlet or Reactive).

The example below is for Tomcat with the spri ng- boot - st art er - web (Servlet stack):

@onponent
public class MyTontat WebSer ver Cust om zer
i npl ements WebSer ver Fact or yCust omi zer <Tontat Ser vl et WebSer ver Fact ory> {

@verride
public void customn ze(Tontat Servl et WebServer Factory factory) {
/| custom ze the factory here

}

}

In addition Spring Boot provides:

Server Servlet stack Reactive stack

Tomcat Tontat Ser vl et WebSer ver Fact ory Tontat Reacti veWebSer ver Fact ory
Jetty JettyServl et WebServer Factory JettyReactiveWbServerFactory
Undertow Undert owSer vl et WebSer ver Fact or Yndert owReact i veWebSer ver Fact ory
Reactor N/A Net t yReacti veWebSer ver Fact ory

Once you've got access to a WebSer ver Fact or y, you can often add customizers to it to configure
specific parts, like connectors, server resources, or the server itself - all using server-specific APIs.

As a last resort, you can also declare your own WWebSer ver Fact or y component, which will override
the one provided by Spring Boot. In this case, you can't rely on configuration properties in the ser ver
namespace anymore.

77.10 Add a Servlet, Filter, or Listener to an Application

In a servlet stack application, i.e. with the spri ng- boot - st art er - web, there are two ways to add
Servl et,Filter, Servl et Cont ext Li st ener, and the other listeners supported by the Servlet API
to your application:

» the section called “Add a Servlet, Filter, or Listener by Using a Spring Bean”

» the section called “Add Servlets, Filters, and Listeners by Using Classpath Scanning”

2.1.0.BUILD-SNAPSHOT Spring Boot 285

https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/api/org/springframework/boot/web/server/WebServerFactoryCustomizer.html

Spring Boot Reference Guide

Add a Servlet, Filter, or Listener by Using a Spring Bean

ToaddaServl et,Filter,orServlet*Li st ener by using a Spring bean, you must provide a @ean
definition for it. Doing so can be very useful when you want to inject configuration or dependencies.
However, you must be very careful that they do not cause eager initialization of too many other beans,
because they have to be installed in the container very early in the application lifecycle. (For example,
it is not a good idea to have them depend on your Dat aSour ce or JPA configuration.) You can work
around such restrictions by initializing the beans lazily when first used instead of on initialization.

In the case of Fil ters and Servl et s, you can also add mappings and init parameters by adding
a FilterRegi strationBean or a Servl et Regi strati onBean instead of or in addition to the
underlying component.

Note

If no di spat cher Type is specified on a filter registration, REQUEST is used. This aligns with the
Servlet Specification’s default dispatcher type.

Like any other Spring bean, you can define the order of Servlet filter beans; please make sure to check
the “the section called “Registering Servlets, Filters, and Listeners as Spring Beans™ section.

Disable Registration of a Servlet or Filter

As described earlier, any Servl et or Filter beans are registered with the servlet container
automatically. To disable registration of a particular Fi | t er or Ser vl et bean, create a registration
bean for it and mark it as disabled, as shown in the following example:

@Bean

public FilterRegistrationBean registration(MFilter filter) {

FilterRegi strati onBean registration = new FilterRegistrati onBean(filter);
regi stration. set Enabl ed(fal se);

return registration;

}

Add Servlets, Filters, and Listeners by Using Classpath Scanning

@\ébServlet, @wbFilter, and @\ebLi stener annotated classes can be automatically
registered with an embedded servlet container by annotating a @Confi gurati on class with
@er vl et Conponent Scan and specifying the package(s) containing the components that you want
to register. By default, @er vl et Conponent Scan scans from the package of the annotated class.

77.11 Configure Access Logging

Access logs can be configured for Tomcat, Undertow, and Jetty through their respective namespaces.

For instance, the following settings log access on Tomcat with a custom pattern.

server.toncat. basedi r=ny-toncat
server.toncat.accessl og. enabl ed=t rue
server.toncat.accessl og. pattern=% % "%" % (%O ns)

Note

The default location for logs is a | ogs directory relative to the Tomcat base directory. By default,
the | ogs directory is a temporary directory, so you may want to fix Tomcat’s base directory or use

2.1.0.BUILD-SNAPSHOT Spring Boot 286

https://tomcat.apache.org/tomcat-8.5-doc/config/valve.html#Access_Logging

Spring Boot Reference Guide

an absolute path for the logs. In the preceding example, the logs are available in my-t ontat /
| ogs relative to the working directory of the application.

Access logging for Undertow can be configured in a similar fashion, as shown in the following example:

server. undert ow. accessl og. enabl ed=t rue
server.undertow. accessl og. pattern=% % "%" % (%O ns)

Logs are stored inal ogs directory relative to the working directory of the application. You can customize
this location by setting the ser ver . undert ow. accessl og. di r ect ory property.

Finally, access logging for Jetty can also be configured as follows:

server.jetty.accessl og. enabl ed=true
server.jetty.accessl og.fil ename=/var/| og/jetty-access.|og

By default, logs are redirected to Syst em er r . For more details, see the Jetty documentation.

77.12 Running Behind a Front-end Proxy Server

Your application might need to send 302 redirects or render content with absolute links back to itself.
When running behind a proxy, the caller wants a link to the proxy and not to the physical address of
the machine hosting your app. Typically, such situations are handled through a contract with the proxy,
which adds headers to tell the back end how to construct links to itself.

If the proxy adds conventional X- For war ded- For and X- For war ded- Pr ot o headers (most proxy
servers do so), the absolute links should be rendered correctly, provided ser ver. use-f or war d-
header s issettotrueinyourapplication. properties.

Note

If your application runs in Cloud Foundry or Heroku, the server. use-forward- headers
property defaults to t r ue. In all other instances, it defaults to f al se.

Customize Tomcat’s Proxy Configuration

If you use Tomcat, you can additionally configure the names of the headers used to carry “forwarded”
information, as shown in the following example:

server.toncat.renote-ip-header =x-your-renote-ip-header
server.toncat. prot ocol - header =x- your - pr ot ocol - header

Tomcat is also configured with a default regular expression that matches internal proxies that are to
be trusted. By default, IP addresses in 10/ 8, 192. 168/ 16, 169. 254/ 16 and 127/ 8 are trusted. You
can customize the valve’s configuration by adding an entry to appl i cat i on. properti es, as shown
in the following example:

server.toncat.internal -proxi es=192\\.168\\.\\d{1, 3}\\.\\d{1, 3}

Note

The double backslashes are required only when you use a properties file for configuration. If you
use YAML, single backslashes are sufficient, and a value equivalent to that shown in the preceding
example would be 192\ . 168\ .\ d{1, 3}\.\d{1, 3}.

2.1.0.BUILD-SNAPSHOT Spring Boot 287

https://www.eclipse.org/jetty/documentation/9.4.x/configuring-jetty-request-logs.html

Spring Boot Reference Guide

Note

You can trust all proxies by setting the i nt er nal - pr oxi es to empty (but do not do so in
production).

You can take complete control of the configuration of Tomcat's Renot el pVal ve by switching the
automatic one off (to do so, set server. use-f orwar d- header s=f al se) and adding a new valve
instance in a Tontat Ser vl et WebSer ver Fact ory bean.

77.13 Enable Multiple Connectors with Tomcat

You can add an or g. apache. cat al i na. connect or. Connect or to the
Tontat Ser vl et WebSer ver Fact ory, which can allow multiple connectors, including HTTP and
HTTPS connectors, as shown in the following example:

@Bean
public Servl et WbServer Factory servl et Contai ner() {

Tontat Ser vl et WebSer ver Factory tontat = new Tontat Servl et WebSer ver Factory();
toncat . addAddi ti onal Tontat Connect or s(cr eat eSsl Connector());

return tontat;

}

private Connector createSsl Connector () {
Connect or connector = new Connector ("org.apache. coyote. httpll. Ht p11N oProtocol ");
Ht t p11Ni oProtocol protocol = (HttpllN oProtocol) connector. getProtocol Handl er();
try {
Fil e keystore = new C assPat hResource("keystore").getFile();
File truststore = new C assPat hResource("keystore").getFile();
connect or. set Scheme("https");
connector. set Secure(true);
connector. set Port (8443);
prot ocol . set SSLEnabl ed(true);
prot ocol . set Keyst or eFi | e(keyst ore. get Absol utePat h());
prot ocol . set Keyst orePass("changeit");
protocol . set TruststoreFi | e(truststore. get Absol utePath());
protocol . set Trust st orePass("changeit");
protocol . set KeyAl i as("apitester");
return connector;
}
catch (1 OException ex) {
throw new Il egal StateException("can't access keystore: [" + "keystore"
+ "] or truststore: [" + "keystore" + "]", ex);

77.14 Use Tomcat's LegacyCookieProcessor

By default, the embedded Tomcat used by Spring Boot does not support "Version 0" of the Cookie
format, so you may see the following error:

java.lang. |11 egal Argunent Exception: An invalid character [32] was present in the Cookie val ue

If at all possible, you should consider updating your code to only store values compliant with later
Cookie specifications. If, however, you cannot change the way that cookies are written, you can instead
configure Tomcat to use a LegacyCooki ePr ocessor . To switch to the LegacyCooki ePr ocessor,
use an WebSer ver Fact or yCust o zer bean that adds a Tontat Cont ext Cust oni zer, as shown
in the following example:

@Bean
publ i c WebSer ver Fact or yCust omi zer <Tontat Ser vl et WebSer ver Fact or y> cooki eProcessor Cust om zer () {
return (factory) -> factory. addCont ext Custom zers(

2.1.0.BUILD-SNAPSHOT Spring Boot 288

Spring Boot Reference Guide

(context) -> context.setCooki eProcessor (new LegacyCooki eProcessor()));

77.15 Enable Multiple Listeners with Undertow

Add an Under t owBui | der Cust omi zer to the Undert owSer vl et WebSer ver Fact ory and add a
listener to the Bui | der, as shown in the following example:

@ean

publ i ¢ UndertowServl et WebSer ver Factory servl et WebSer ver Factory() {
Under t owSer vl et WebSer ver Factory factory = new UndertowSer vl et WebSer ver Factory();
factory. addBui | der Cust oni zer s(new Undert owBui | der Cust omi zer () {

@verride
public void custom ze(Builder builder) {
bui | der. addHt t pLi st ener (8080, "0.0.0.0");

}

)

return factory;

}

77.16 Create WebSocket Endpoints Using @ServerEndpoint

If you want to use @er ver Endpoi nt in a Spring Boot application that used an embedded container,
you must declare a single Ser ver Endpoi nt Export er @ean, as shown in the following example:

@Bean
publ i c Server Endpoi nt Exporter server Endpoi nt Exporter() {
return new Server Endpoi nt Exporter();

}

The bean shown in the preceding example registers any @er ver Endpoi nt annotated beans with
the underlying WebSocket container. When deployed to a standalone servlet container, this role is
performed by a servlet container initializer, and the Ser ver Endpoi nt Export er bean is not required.

2.1.0.BUILD-SNAPSHOT Spring Boot 289

Spring Boot Reference Guide

78. Spring MVC

Spring Boot has a number of starters that include Spring MVC. Note that some starters include a
dependency on Spring MVC rather than include it directly. This section answers common questions
about Spring MVC and Spring Boot.

78.1 Write a JSON REST Service

Any Spring @Rest Cont r ol | er in a Spring Boot application should render JISON response by default
as long as Jackson2 is on the classpath, as shown in the following example:

@Rest Control | er
public class MyController {

@Request Mappi ng("/t hi ng")
public MyThing thing() {
return new MyThing();

}

As long as MyThi ng can be serialized by Jackson2 (true for a normal POJO or Groovy object), then
| ocal host : 8080/ t hi ng serves a JSON representation of it by default. Note that, in a browser, you
might sometimes see XML responses, because browsers tend to send accept headers that prefer XML.

78.2 Write an XML REST Service

If you have the Jackson XML extension (j ackson- dat af or mat - xm) on the classpath, you can use
it to render XML responses. The previous example that we used for JSON would work. To use the
Jackson XML renderer, add the following dependency to your project:

<dependency>
<groupl d>com f ast erxni . j ackson. dat af or mat </ gr oup! d>
<artifactld>j ackson-dataformat-xm </artifactld>

</ dependency>

You may also want to add a dependency on Woodstox. It is faster than the default StAX implementation
provided by the JDK and also adds pretty-print support and improved namespace handling. The
following listing shows how to include a dependency on Woodstox:

<dependency>
<gr oupl d>or g. codehaus. woodst ox</ gr oupl d>
<artifact|d>woodstox-core-asl </artifactld>

</ dependency>

If Jackson’s XML extension is not available, JAXB (provided by default in the JDK) is used, with the
additional requirement of having My Thi ng annotated as @Xm Root El enent , as shown in the following
example:

@m Root El enent

public class MyThing {
private String nane;

/Il .. getters and setters

}

To get the server to render XML instead of JSON, you might have to send an Accept: text/xnl
header (or use a browser).

2.1.0.BUILD-SNAPSHOT Spring Boot 290

http://localhost:8080/thing
https://github.com/FasterXML/woodstox

Spring Boot Reference Guide

78.3 Customize the Jackson ObjectMapper

Spring MVC (client and server side) uses Ht t pMessageConvert er s to negotiate content conversion
in an HTTP exchange. If Jackson is on the classpath, you already get the default converter(s) provided
by Jackson2hj ect Mapper Bui | der, an instance of which is auto-configured for you.

The Obj ect Mapper (or Xm Mapper for Jackson XML converter) instance (created by default) has the
following customized properties:

* Mapper Feat ur e. DEFAULT_VI EW | NCLUSI ONis disabled

» DeserializationFeature. FAl L_ON_UNKNOAN_ PROPERTI ES is disabled
* SerializationFeature. WRl TE_DATES_AS_TI MESTAMPS is disabled
Spring Boot also has some features to make it easier to customize this behavior.

You can configure the Obj ect Mapper and Xm Mapper instances by using the environment. Jackson
provides an extensive suite of simple on/off features that can be used to configure various aspects of
its processing. These features are described in six enums (in Jackson) that map onto properties in the
environment:

Enum Property Values

com f ast erxm . j ackson. dat apr nhdgDpaeksahi daseonkeatrzar eenf af sat ure_nane>
com fasterxm . j ackson. cor epdsagGeaekabar gEaat at er . «f aat iaksaane>

com f ast erxm . j ackson. dat apr ndgMapp&sBeatapper . <f et ueef ahse>

com fasterxm . j ackson. cor epdsagPaask&soRephuser . <f eat ueef ahse>

com fasterxm .jackson. dat apr ndgSgackkpnaseonbgearzat eonesf ahtar e_nane>

com f ast erxm . j ackson. annepat nhgnj ds&sbncdeflaul hel udéways, non_nul I,

property-inclusion non_absent, non_defaul t,
non_enpty
For example, to enable pretty print, set

spring.jackson.serialization.indent_output=true.Note that, thanks to the use of relaxed
binding, the case of i ndent _out put does not have to match the case of the corresponding enum
constant, which is | NDENT _OUTPUT.

This environment-based configuration is applied to the auto-configured
Jackson2Obj ect Mapper Bui | der bean and applies to any mappers created by using the builder,
including the auto-configured Cbj ect Mapper bean.

The context's Jackson2Cbj ect MapperBuil der can be customized by one or more
Jackson2Cbj ect Mapper Bui | der Cust omi zer beans. Such customizer beans can be ordered
(Boot's own customizer has an order of 0), letting additional customization be applied both before and
after Boot’s customization.

Any beans of type com fasterxm .jackson. dat abi nd. Modul e are automatically registered
with the auto-configured Jackson2Cbj ect Mapper Bui | der and are applied to any Cbj ect Mapper
instances that it creates. This provides a global mechanism for contributing custom modules when you
add new features to your application.

2.1.0.BUILD-SNAPSHOT Spring Boot 291

Spring Boot Reference Guide

If you want to replace the default Obj ect Mapper completely, either define a @ean of
that type and mark it as @rimary or, if you prefer the builder-based approach, define a
Jackson2Cbj ect Mapper Bui | der @ean. Note that, in either case, doing so disables all auto-
configuration of the Cbj ect Mapper .

If you provide any @eans of type Mappi nglackson2Ht t pMessageConvert er, they replace the
default value in the MVC configuration. Also, a convenience bean of type Ht t pMessageConvertersis
provided (and is always available if you use the default MVC configuration). It has some useful methods
to access the default and user-enhanced message converters.

See the “Section 78.4, “Customize the @ResponseBody Rendering™ section and the
WebMvcAut oConf i gur at i on source code for more details.

78.4 Customize the @ResponseBody Rendering

Spring uses HtpMessageConverters to render @ResponseBody (or responses from
@rest Cont r ol | er). You can contribute additional converters by adding beans of the appropriate type
in a Spring Boot context. If a bean you add is of a type that would have been included by default anyway
(such as Mappi ngJackson2Ht t pMessageConvert er for JSON conversions), it replaces the default
value. A convenience bean of type Ht t pMessageConvert er s is provided and is always available if
you use the default MVC configuration. It has some useful methods to access the default and user-
enhanced message converters (For example, it can be useful if you want to manually inject them into
a custom Rest Tenpl at e).

As in normal MVC usage, any WebMscConf i gur er beans that you provide can also contribute
converters by overriding the conf i gur eMessageConvert er s method. However, unlike with normal
MVC, you can supply only additional converters that you need (because Spring Boot uses the same
mechanism to contribute its defaults). Finally, if you opt out of the Spring Boot default MVC configuration
by providing your own @tnabl eWwebMvc configuration, you can take control completely and do
everything manually by using get MessageConvert er s from WebMscConf i gur at i onSupport .

See the WebMvcAut oConf i gur at i on source code for more details.

78.5 Handling Multipart File Uploads

Spring Boot embraces the Servlet 3 j avax. servl et. htt p. Part API to support uploading files. By
default, Spring Boot configures Spring MVC with a maximum size of 1MB per file and a maximum of
10MB of file data in a single request. You may override these values, the location to which intermediate
data is stored (for example, to the / t np directory), and the threshold past which data is flushed to disk by
using the properties exposed inthe Mul t i part Properti es class. For example, if you want to specify
that files be unlimited, set the spri ng. servlet. nul ti part. max-fil e-si ze property to - 1.

The multipart support is helpful when you want to receive multipart encoded file data as a
@Request Par amannotated parameter of type Mul ti part Fi | e in a Spring MVC controller handler
method.

See the Mul ti part Aut oConf i gur at i on source for more details.

78.6 Switch Off the Spring MVC DispatcherServlet

By default, all content is served from the root of your application (/). If you would rather map to a different
path, you can configure one as follows:

2.1.0.BUILD-SNAPSHOT Spring Boot 292

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/MultipartAutoConfiguration.java

Spring Boot Reference Guide

spring. mvc. servl et. pat h=/acne

If you have additional servlets you can declare a @ean of type Servlet or
Servl et Regi strati onBean for each and Spring Boot will register them transparently to the
container. Because servlets are registered that way, they can be mapped to a sub-context of the
Di spat cher Ser vl et without invoking it.

Configuring the Di spat cher Ser vl et yourself is unusual but if you really need to do it, a @ean
of type Di spat cher Servl et Pat h must be provided as well to provide the path of your custom
Di spat cher Servl et.

78.7 Switch off the Default MVC Configuration

The easiest way to take complete control over MVC configuration is to provide your own
@confi gur at i on with the @nabl eWebM/ ¢ annotation. Doing so leaves all MVC configuration in your
hands.

78.8 Customize ViewResolvers

A Vi ewResol ver is a core component of Spring MVC, translating view names in @ontrol | er
to actual Vi ew implementations. Note that Vi ewResol vers are mainly used in Ul applications,
rather than REST-style services (a Vi ew is not used to render a @ResponseBody). There are many
implementations of Vi ewResol ver to choose from, and Spring on its own is not opinionated about
which ones you should use. Spring Boot, on the other hand, installs one or two for you, depending on
what it finds on the classpath and in the application context. The Di spat cher Ser vl et uses all the
resolvers it finds in the application context, trying each one in turn until it gets a result, so, if you add
your own, you have to be aware of the order and in which position your resolver is added.

WebMscAut oConf i gur at i on adds the following Vi ewResol ver s to your context:

* An | nt er nal Resour ceVi ewResol ver named ‘defaultViewResolver'. This one locates physical
resources that can be rendered by using the Def aul t Ser vl et (including static resources and JSP
pages, if you use those). It applies a prefix and a suffix to the view name and then looks for a
physical resource with that path in the servlet context (the defaults are both empty but are accessible
for external configuration through spri ng. mvc. vi ew. prefi x and spri ng. nvc. vi ew. suf fi x).
You can override it by providing a bean of the same type.

» A BeanNameVi ewResol ver named ‘beanNameViewResolver'. This is a useful member of the view
resolver chain and picks up any beans with the same name as the Vi ew being resolved. It should
not be necessary to override or replace it.

« A Cont ent Negoti ati ngVi ewResol ver named ‘viewResolver' is added only if there are actually
beans of type Vi ew present. This is a ‘master’ resolver, delegating to all the others and
attempting to find a match to the ‘Accept’ HTTP header sent by the client. There is a useful
blog about Cont ent Negoti ati ngVi ewResol ver that you might like to study to learn more,
and you might also look at the source code for detail. You can switch off the auto-configured
Cont ent Negoti ati ngVi ewResol ver by defining a bean named ‘viewResolver'.

« If you use Thymeleaf, you also have a Thynel eaf Vi ewResol ver named ‘thymeleafViewResolver'.
It looks for resources by surrounding the view name with a prefix and suffix. The prefix is
spring.thymel eaf . prefix, and the suffix is spring.thynel eaf. suffi x. The values of

2.1.0.BUILD-SNAPSHOT Spring Boot 293

https://spring.io/blog/2013/06/03/content-negotiation-using-views

Spring Boot Reference Guide

the prefix and suffix default to ‘classpath:/templates/ and ‘.html’, respectively. You can override
Thynel eaf Vi ewResol ver by providing a bean of the same name.

If you use FreeMarker, you also have a FreeMarkerVi ewResol ver named
‘freeMarkerViewResolver'. It looks for resources in a loader path (which is externalized to
spring. freemarker.tenpl at eLoader Pat h and has a default value of ‘classpath:/templates/’)
by surrounding the view name with a prefix and a suffix. The prefix is externalized to
spring. freemarker. prefix, and the suffix is externalized to spri ng. freemar ker. suf fi x.
The default values of the prefix and suffix are empty and “.ftI', respectively. You can override
Fr eeMar ker Vi ewResol ver by providing a bean of the same name.

If you use Groovy templates (actually, if gr oovy-tenpl ates is on your classpath), you also
have a Gr oovyMar kupVi ewResol ver named ‘groovyMarkupViewResolver'. It looks for resources
in a loader path by surrounding the view name with a prefix and suffix (externalized to
spring. groovy. tenpl ate. prefixandspring. groovy.tenpl ate. suffi x). The prefix and
suffix have default values of ‘classpath:/templates/’ and ‘.tpl’, respectively. You can override
GroovyMar kupVi ewResol ver by providing a bean of the same name.

For more detail, see the following sections:

WebM/cAut oConfi gur ati on

Thynel eaf Aut oConfi gur ati on

Fr eeMar ker Aut oConf i gur ati on

G oovyTenpl at eAut oConfi gur ati on

2.1.0.BUILD-SNAPSHOT Spring Boot 294

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java

Spring Boot Reference Guide

79. Testing With Spring Security

Spring Security provides support for running tests as a specific user. For example, the test in the snippet
below will run with an authenticated user that has the ADM Nrole.

@est

@N t hMbckUser (rol es="ADM N')

public void requestProtectedU | WthUser() throws Exception {
nvc

.perforn(get("/"))

Spring Security provides comprehensive integration with Spring MVC Test and this can also be used
when testing controllers using the @\ébM/cTest slice and MbckMrc.

For additional details on Spring Security’s testing support, refer to Spring Security’'s reference
documentation).

2.1.0.BUILD-SNAPSHOT Spring Boot 295

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#test
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#test

Spring Boot Reference Guide

80. Jersey

80.1 Secure Jersey endpoints with Spring Security

Spring Security can be used to secure a Jersey-based web application in much the same way as
it can be used to secure a Spring MVC-based web application. However, if you want to use Spring
Security’s method-level security with Jersey, you must configure Jersey to use set St at us(i nt) rather
sendError (i nt) . This prevents Jersey from committing the response before Spring Security has had
an opportunity to report an authentication or authorization failure to the client.

The j ersey. config.server.response. set St at usOver SendErr or property must be set to
t r ue on the application’s Resour ceConf i g bean, as shown in the following example:

@onponent
public class JerseyConfig extends ResourceConfig {

public JerseyConfig() {
regi st er (Endpoi nt. cl ass) ;
set Properties(Col | ections. singl et onMap(
"jersey.config.server.response. set StatusOver SendError", true));

2.1.0.BUILD-SNAPSHOT Spring Boot 296

Spring Boot Reference Guide

81. HTTP Clients

Spring Boot offers a number of starters that work with HTTP clients. This section answers questions
related to using them.

81.1 Configure RestTemplate to Use a Proxy

As described in Section 33.1, “RestTemplate Customization”, you can use a
Rest Tenpl at eCust om zer with Rest Tenpl at eBui | der to build a customized Rest Tenpl at e.
This is the recommended approach for creating a Rest Tenpl at e configured to use a proxy.

The exact details of the proxy configuration depend on the underlying client request factory that is
being used. The following example configures Ht t pConponent s i ent Request Fact ory with an
Ht t pCl i ent that uses a proxy for all hosts except 192. 168. 0. 5:

static class ProxyCustom zer inplenments RestTenpl at eCustom zer {

@verride
public void customn ze(Rest Tenpl ate rest Tenpl ate) {
Ht t pHost proxy = new HttpHost (" proxy. exanpl e. coni);
HtpCient httpCient = HtpCientBuilder.create()
. set Rout ePl anner (new Def aul t ProxyRout ePl anner (proxy) {

@verride
public HttpHost determni neProxy(HttpHost target,
Ht t pRequest request, HttpContext context)
throws HttpException {
if (target.getHostName().equal s("192.168.0.5")) {
return null;
}

return super.determ neProxy(target, request, context);

}

}).build();
rest Tenpl at e. set Request Fact ory(
new Htt pConponent sC i ent Ht t pRequest Factory(httpCient));

2.1.0.BUILD-SNAPSHOT Spring Boot 297

Spring Boot Reference Guide

82. Logging

Spring Boot has no mandatory logging dependency, except for the Commons Logging API, which is
typically provided by Spring Framework’s spri ng-j cl module. To use Logback, you need to include
it and spring-jcl on the classpath. The simplest way to do that is through the starters, which all
depend on spri